論文の概要: Reinforcing Clinical Decision Support through Multi-Agent Systems and Ethical AI Governance
- arxiv url: http://arxiv.org/abs/2504.03699v2
- Date: Thu, 10 Apr 2025 15:38:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:23:49.104287
- Title: Reinforcing Clinical Decision Support through Multi-Agent Systems and Ethical AI Governance
- Title(参考訳): マルチエージェントシステムと倫理的AIガバナンスによる臨床意思決定支援の強化
- Authors: Ying-Jung Chen, Chi-Sheng Chen, Ahmad Albarqawi,
- Abstract要約: 本稿では,臨床診断支援のためのマルチエージェントシステムの構築に焦点をあてる。
我々はeICUデータベースを用いて、ラボ分析専用のエージェント、バイタルのみのインタプリタ、コンテキスト推論を行う。
すべてがビジネスロジックの透過的な実装であり、倫理的AIガバナンスの原則の影響を受けています。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In the age of data-driven medicine, it is paramount to include explainable and ethically managed artificial intelligence in explaining clinical decision support systems to achieve trustworthy and effective patient care. The focus of this paper is on a new architecture of a multi-agent system for clinical decision support that uses modular agents to analyze laboratory results, vital signs, and the clinical context and then integrates these results to drive predictions and validate outcomes. We describe our implementation with the eICU database to run lab-analysis-specific agents, vitals-only interpreters, and contextual reasoners and then run the prediction module and a validation agent. Everything is a transparent implementation of business logic, influenced by the principles of ethical AI governance such as Autonomy, Fairness, and Accountability. It provides visible results that this agent-based framework not only improves on interpretability and accuracy but also on reinforcing trust in AI-assisted decisions in an intensive care setting.
- Abstract(参考訳): データ駆動医療の時代には、信頼できる効果的な患者医療を実現するための臨床意思決定支援システムを説明するために、説明可能な倫理的に管理された人工知能を含めることが最重要である。
本研究は, モジュールエージェントを用いて臨床検査結果, バイタルサイン, 臨床状況を分析し, これらの結果を統合し, 予測と評価を行う多エージェントシステムの構築に焦点をあてる。
我々は,eICUデータベースを用いて,ラボ分析専用エージェント,バイタルズ専用インタプリタ,文脈推論器を実行し,予測モジュールと検証エージェントを実行する。
すべてはビジネスロジックの透過的な実装であり、自律性、公正性、説明責任といった倫理的AIガバナンスの原則に影響を受けています。
このエージェントベースのフレームワークは、解釈可能性と正確性の向上だけでなく、集中的なケア環境でAI支援決定に対する信頼の強化にも寄与する。
関連論文リスト
- Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
この章は、医療で信頼できるAIシステムを作るには、公平さ、説明可能性、プライバシーを慎重に考慮する必要があることを強調している。
AIによる公平な医療提供を保証するという課題は強調され、臨床予測モデルのバイアスを特定し緩和する方法が議論されている。
この議論は、ディープラーニングモデルのデータ漏洩からモデル説明に対する高度な攻撃に至るまで、医療AIシステムのプライバシ脆弱性の分析に進展している。
論文 参考訳(メタデータ) (2025-01-16T16:17:39Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
臨床ワークフローの5つの重要な段階をカバーする12,163の臨床症例のデータセットであるMedChainを提示する。
フィードバック機構とMCase-RAGモジュールを統合したAIシステムであるMedChain-Agentも提案する。
論文 参考訳(メタデータ) (2024-12-02T15:25:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Beyond One-Time Validation: A Framework for Adaptive Validation of Prognostic and Diagnostic AI-based Medical Devices [55.319842359034546]
既存のアプローチは、これらのデバイスを実際にデプロイする際の複雑さに対処するのに不足することが多い。
提示されたフレームワークは、デプロイメント中に検証と微調整を繰り返すことの重要性を強調している。
現在の米国とEUの規制分野に位置づけられている。
論文 参考訳(メタデータ) (2024-09-07T11:13:52Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Detecting algorithmic bias in medical-AI models using trees [7.939586935057782]
本稿では,医療AI意思決定支援システムにおけるアルゴリズムバイアスの領域を検出するための革新的な枠組みを提案する。
本手法は,医学・AIモデルにおける潜在的なバイアスを,特に敗血症予測の文脈で効果的に同定する。
論文 参考訳(メタデータ) (2023-12-05T18:47:34Z) - Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework [13.215318138576713]
論文は、解釈可能なAIプロセス、方法、応用、および医療における実装の課題についてレビューする。
医療における堅牢な解釈可能性アプローチの重要な役割を包括的に理解することを目的としている。
論文 参考訳(メタデータ) (2023-11-18T12:29:18Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Assessing the communication gap between AI models and healthcare
professionals: explainability, utility and trust in AI-driven clinical
decision-making [1.7809957179929814]
本稿では,臨床診断支援のための機械学習モデル(ML)の実用的評価フレームワークを提案する。
この研究は、MLの説明モデルにおいて、これらが臨床的文脈に実用的に埋め込まれているとき、よりニュアンスな役割を明らかにした。
論文 参考訳(メタデータ) (2022-04-11T11:59:04Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。