論文の概要: Primary Care Diagnoses as a Reliable Predictor for Orthopedic Surgical Interventions
- arxiv url: http://arxiv.org/abs/2502.04423v1
- Date: Thu, 06 Feb 2025 17:15:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:56.762971
- Title: Primary Care Diagnoses as a Reliable Predictor for Orthopedic Surgical Interventions
- Title(参考訳): 整形外科的介入の信頼性予測因子としてのプライマリケア診断
- Authors: Khushboo Verma, Alan Michels, Ergi Gumusaneli, Shilpa Chitnis, Smita Sinha Kumar, Christopher Thompson, Lena Esmail, Guruprasath Srinivasan, Chandini Panchada, Sushovan Guha, Satwant Kumar,
- Abstract要約: リファラルワークフローの非効率性は、最適な患者と高い医療費に寄与する。
本研究では,プライマリケアの診断項目に基づく手続き的ニーズの予測の可能性について検討した。
- 参考スコア(独自算出の注目度): 0.10624941710159722
- License:
- Abstract: Referral workflow inefficiencies, including misaligned referrals and delays, contribute to suboptimal patient outcomes and higher healthcare costs. In this study, we investigated the possibility of predicting procedural needs based on primary care diagnostic entries, thereby improving referral accuracy, streamlining workflows, and providing better care to patients. A de-identified dataset of 2,086 orthopedic referrals from the University of Texas Health at Tyler was analyzed using machine learning models built on Base General Embeddings (BGE) for semantic extraction. To ensure real-world applicability, noise tolerance experiments were conducted, and oversampling techniques were employed to mitigate class imbalance. The selected optimum and parsimonious embedding model demonstrated high predictive accuracy (ROC-AUC: 0.874, Matthews Correlation Coefficient (MCC): 0.540), effectively distinguishing patients requiring surgical intervention. Dimensionality reduction techniques confirmed the model's ability to capture meaningful clinical relationships. A threshold sensitivity analysis identified an optimal decision threshold (0.30) to balance precision and recall, maximizing referral efficiency. In the predictive modeling analysis, the procedure rate increased from 11.27% to an optimal 60.1%, representing a 433% improvement with significant implications for operational efficiency and healthcare revenue. The results of our study demonstrate that referral optimization can enhance primary and surgical care integration. Through this approach, precise and timely predictions of procedural requirements can be made, thereby minimizing delays, improving surgical planning, and reducing administrative burdens. In addition, the findings highlight the potential of clinical decision support as a scalable solution for improving patient outcomes and the efficiency of the healthcare system.
- Abstract(参考訳): リファラルワークフローの非効率性は、不正な参照や遅延を含む、最適でない患者の結果と高い医療費に寄与する。
本研究では,プライマリケアの診断項目に基づく手続き的ニーズの予測の可能性について検討し,参照精度の向上,ワークフローの合理化,患者へのより良いケアの提供について検討した。
テキサス大学タイラー校の2,086件の整形外科紹介データセットを、ベースジェネラル・エンベディング(BGE)上に構築された機械学習モデルを用いて分析した。
実世界の適用性を確保するため、耐雑音実験を行い、クラス不均衡を軽減するためにオーバーサンプリング技術を用いた。
選択した最適および同種埋め込みモデルは高い予測精度 (ROC-AUC: 0.874, Matthews correlation Coefficient (MCC): 0.540) を示し, 外科的介入を必要とする患者を効果的に識別した。
次元性低下技術は、このモデルが有意義な臨床関係を捉える能力を確認した。
閾値感度分析では、精度とリコールのバランスをとるための最適決定閾値(0.30)を特定し、参照効率を最大化した。
予測モデル分析では、手順率は11.27%から60.1%に増加し、手術効率と医療収入に大きな影響を及ぼす433%の改善となった。
本研究は,参照最適化が一次医療と外科医療の統合を促進できることを示すものである。
このアプローチにより、手続き的要件の正確かつタイムリーな予測が可能となり、遅延を最小化し、手術計画を改善し、管理上の負担を軽減できる。
さらに, 患者予後の改善と医療システムの効率向上のためのスケーラブルなソリューションとして, 臨床意思決定支援の可能性を強調した。
関連論文リスト
- A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre [0.0]
本研究は,患者フローの最適化のためのオール・エンコンパス・フレームワークを提案する。
我々は、230万件の未確認患者記録の包括的なデータセットを用いて、人口統計、診断、治療、サービス、費用、料金を分析した。
本モデルでは,患者の入院時間(LoS)を教師付き学習アルゴリズムを用いて予測する。
論文 参考訳(メタデータ) (2025-01-30T18:01:48Z) - Advancing clinical trial outcomes using deep learning and predictive modelling: bridging precision medicine and patient-centered care [0.0]
深層学習と予測モデリングは、臨床試験設計、患者採用、リアルタイムモニタリングを最適化するための変換ツールとして登場した。
本研究では、畳み込みニューラルネットワーク(CNN)やトランスフォーマーモデルなどの深層学習技術の患者層化への応用について検討する。
生存分析や時系列予測を含む予測モデリング手法は、試行結果の予測、効率の向上、試行失敗率の低減に用いられている。
論文 参考訳(メタデータ) (2024-12-09T23:20:08Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
外傷性脳損傷(TBI)患者の呼吸器関連肺炎(VAP)は重大な死亡リスクをもたらす。
TBI患者のVAPのタイムリーな検出と予後は、患者の予後を改善し、医療資源の負担を軽減するために重要である。
我々はMIMIC-IIIデータベースを用いて6つの機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-08-02T09:44:18Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
本研究の目的は、心拍変動(HRV)機能を用いて、敗血症検出のための効果的な予測モデルを開発することである。
ニューラルネットワークモデルは、HRVの特徴に基づいてトレーニングされ、F1スコアは0.805、精度は0.851、リコールは0.763である。
論文 参考訳(メタデータ) (2024-08-01T01:47:29Z) - Application of Machine Learning Algorithms in Classifying Postoperative Success in Metabolic Bariatric Surgery: A Comprehensive Study [0.32985979395737786]
本研究は, メタボリック・バリウム手術の文脈において, 患者を分類するための新しい機械学習手法を提案する。
GaussianNB、ComplementNB、KNN、Decision Tree、RandomOverSamplerのKNN、SMOTEのKNNなど、さまざまな機械学習モデルを73人のデータセットに適用した。
論文 参考訳(メタデータ) (2024-03-29T11:27:37Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
新型コロナウイルス(covid-19)パンデミックのような危機は、医療機関にとって深刻な課題となる。
BaBSim.Hospitalは離散イベントシミュレーションに基づく容量計画ツールである。
BaBSim.Hospitalを改善するためにこれらのパラメータを調査し最適化することを目指しています。
論文 参考訳(メタデータ) (2021-05-16T12:38:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。