論文の概要: A multi-scale lithium-ion battery capacity prediction using mixture of experts and patch-based MLP
- arxiv url: http://arxiv.org/abs/2504.03706v1
- Date: Wed, 26 Mar 2025 13:59:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-13 06:23:21.524296
- Title: A multi-scale lithium-ion battery capacity prediction using mixture of experts and patch-based MLP
- Title(参考訳): 専門家とパッチベースMLPの混合によるリチウムイオン電池容量のマルチスケール予測
- Authors: Yuzhu Lei, Guanding Yu,
- Abstract要約: マルチスケールキャパシティ予測モデルであるMSPMLPを提案する。
パッチサイズが異なるパッチベースのブロックを用いて、キャパシティシーケンスからマルチスケールの特徴を抽出する。
MSPMLPは0.0078の平均絶対誤差(MAE)を達成し、既存の手法に比べて41.8%改善した。
- 参考スコア(独自算出の注目度): 11.793495716666591
- License:
- Abstract: Lithium-ion battery health management has become increasingly important as the application of batteries expands. Precise forecasting of capacity degradation is critical for ensuring the healthy usage of batteries. In this paper, we innovatively propose MSPMLP, a multi-scale capacity prediction model utilizing the mixture of experts (MoE) architecture and patch-based multi-layer perceptron (MLP) blocks, to capture both the long-term degradation trend and local capacity regeneration phenomena. Specifically, we utilize patch-based MLP blocks with varying patch sizes to extract multi-scale features from the capacity sequence. Leveraging the MoE architecture, the model adaptively integrates the extracted features, thereby enhancing its capacity and expressiveness. Finally, the future battery capacity is predicted based on the integrated features, achieving high prediction accuracy and generalization. Experimental results on the public NASA dataset indicate that MSPMLP achieves a mean absolute error (MAE) of 0.0078, improving by 41.8\% compared to existing methods. These findings highlight that MSPMLP, owing to its multi-scale modeling capability and generalizability, provides a promising solution to the battery capacity prediction challenges caused by capacity regeneration phenomena and complex usage conditions. The code of this work is provided at https://github.com/LeiYuzhu/CapacityPredict.
- Abstract(参考訳): リチウムイオン電池の健康管理は、電池の応用が拡大するにつれてますます重要になっている。
キャパシティ劣化の正確な予測は、電池の健全な使用を保証するために重要である。
本稿では,専門家(MoE)アーキテクチャとパッチベースの多層パーセプトロン(MLP)ブロックを併用したマルチスケールキャパシティ予測モデルMSPMLPを提案する。
具体的には,パッチサイズが異なるパッチベースのMPPブロックを用いて,キャパシティシーケンスからマルチスケールの特徴を抽出する。
MoEアーキテクチャを利用することで、モデルは抽出した特徴を適応的に統合し、キャパシティと表現性を向上する。
最後に、統合機能に基づいて将来のバッテリ容量を予測し、高い予測精度と一般化を実現する。
NASAの公開データセットの実験結果は、MSPMLPが平均絶対誤差(MAE)0.0078を達成し、既存の手法に比べて41.8\%改善していることを示している。
これらの結果から,MSPMLPはそのマルチスケールモデリング能力と一般化性から,キャパシティ・リジェネレーション現象や複雑な使用条件に起因するバッテリー容量予測の課題に対して,有望な解決策を提供することが明らかとなった。
この作業のコードはhttps://github.com/LeiYuzhu/CapacityPredict.comで公開されている。
関連論文リスト
- Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
微調整MLLMは、特定の下流タスクのパフォーマンスを改善するための一般的なプラクティスとなっている。
一般化と特殊化のトレードオフのバランスをとるために,事前学習と微調整の両方におけるパラメータの重要度を測定することを提案する。
論文 参考訳(メタデータ) (2024-11-17T01:16:37Z) - Remaining Useful Life Prediction for Batteries Utilizing an Explainable AI Approach with a Predictive Application for Decision-Making [0.0]
バッテリーRULを予測・分類するための機械学習モデルを開発した。
提案したTLEモデルはRMSE, MAE, R二乗誤差のベースラインモデルより一貫して優れている。
XGBoostは、クロスバリデーション技術によって検証された99%の分類精度を達成した。
論文 参考訳(メタデータ) (2024-09-26T15:08:38Z) - COEFF-KANs: A Paradigm to Address the Electrolyte Field with KANs [5.759388420139191]
液体電解質の組成に基づいてクーロン効率(CE)を自動的に予測する新しい手法を提案する。
得られた電解質の特徴を多層パーセプトロンまたはコルモゴロフ・アルノルドネットワークに入力してCEを予測する。
実世界のデータセットを用いた実験結果から,本手法はCE予測のためのSOTAを全ベースラインと比較した結果を得た。
論文 参考訳(メタデータ) (2024-07-24T14:45:25Z) - Depth analysis of battery performance based on a data-driven approach [5.778648596769691]
容量の減少は、細胞の応用における最も難解な問題の1つである。
サイクルを通してのセルの容量変化を機械学習技術を用いて予測する。
論文 参考訳(メタデータ) (2023-08-30T08:15:27Z) - Cerberus: A Deep Learning Hybrid Model for Lithium-Ion Battery Aging
Estimation and Prediction Based on Relaxation Voltage Curves [7.07637687957493]
本稿では,ディープラーニングに基づくキャパシティ老化推定と予測のためのハイブリッドモデルを提案する。
提案手法は, チャージサイクルと放電サイクルを含む新しいデータセットに対して, 様々な速度で検証する。
論文 参考訳(メタデータ) (2023-08-15T15:07:32Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - Modified Gaussian Process Regression Models for Cyclic Capacity
Prediction of Lithium-ion Batteries [5.663192900261267]
本稿では,リチウムイオン電池の容量予測のための機械学習によるデータ駆動モデルの開発について述べる。
開発モデルは, 種々のサイクリングパターンを有する酸化ニッケル (MCN) リチウムイオン電池と比較した。
論文 参考訳(メタデータ) (2020-12-31T19:05:27Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。