論文の概要: Brain Network Classification Based on Graph Contrastive Learning and Graph Transformer
- arxiv url: http://arxiv.org/abs/2504.03740v1
- Date: Tue, 01 Apr 2025 13:26:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:14:18.836535
- Title: Brain Network Classification Based on Graph Contrastive Learning and Graph Transformer
- Title(参考訳): グラフコントラスト学習とグラフ変換器を用いた脳ネットワーク分類
- Authors: ZhiTeng Zhu, Lan Yao,
- Abstract要約: 本稿では,グラフコントラスト学習をグラフ変換器と統合したPHGCL-DDGformerという新しいモデルを提案する。
実世界のデータセットによる実験結果から、PHGCL-DDGformerモデルは、脳ネットワーク分類タスクにおける既存の最先端のアプローチよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.6906005491572401
- License:
- Abstract: The dynamic characterization of functional brain networks is of great significance for elucidating the mechanisms of human brain function. Although graph neural networks have achieved remarkable progress in functional network analysis, challenges such as data scarcity and insufficient supervision persist. To address the limitations of limited training data and inadequate supervision, this paper proposes a novel model named PHGCL-DDGformer that integrates graph contrastive learning with graph transformers, effectively enhancing the representation learning capability for brain network classification tasks. To overcome the constraints of existing graph contrastive learning methods in brain network feature extraction, an adaptive graph augmentation strategy combining attribute masking and edge perturbation is implemented for data enhancement. Subsequently, a dual-domain graph transformer (DDGformer) module is constructed to integrate local and global information, where graph convolutional networks aggregate neighborhood features to capture local patterns while attention mechanisms extract global dependencies. Finally, a graph contrastive learning framework is established to maximize the consistency between positive and negative pairs, thereby obtaining high-quality graph representations. Experimental results on real-world datasets demonstrate that the PHGCL-DDGformer model outperforms existing state-of-the-art approaches in brain network classification tasks.
- Abstract(参考訳): 機能的脳ネットワークの動的特徴は、人間の脳機能のメカニズムを解明する上で非常に重要である。
グラフニューラルネットワークは機能的ネットワーク分析において顕著な進歩を遂げているが、データ不足や監視の不十分といった課題は持続している。
本稿では、限られたトレーニングデータと不十分な監視の限界に対処するため、グラフコントラスト学習とグラフ変換器を統合し、脳ネットワーク分類タスクの表現学習能力を効果的に向上するPHGCL-DDGformerという新しいモデルを提案する。
脳ネットワークの特徴抽出における既存のグラフコントラスト学習手法の制約を克服するため、属性マスキングとエッジ摂動を組み合わせた適応グラフ増強戦略を実装した。
次に、局所的およびグローバルな情報を統合するために、デュアルドメイングラフトランスフォーマー(DDGformer)モジュールを構築し、グラフ畳み込みネットワークが近傍の特徴を集約して局所的なパターンをキャプチャし、アテンション機構がグローバルな依存関係を抽出する。
最後に、正対と負対の整合性を最大化し、高品質なグラフ表現を得るために、グラフコントラスト学習フレームワークを確立する。
実世界のデータセットによる実験結果から、PHGCL-DDGformerモデルは、脳ネットワーク分類タスクにおける既存の最先端のアプローチよりも優れていることが示された。
関連論文リスト
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
本稿では,インターネットの急速な発展に伴う複雑なグラフデータ処理におけるグラフニューラルネットワーク(GNN)の適用と課題について考察する。
自己監督機構を導入することにより、グラフデータの多様性と複雑さに対する既存モデルの適合性を向上させることが期待されている。
論文 参考訳(メタデータ) (2024-10-23T07:14:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
本稿では,グラフサンプリングにおける集約を利用したアグリゲータ正規化グラフ畳み込みネットワークを提案する。
提案モデルは,画像特徴と非画像特徴の両方をグラフノードとエッジに組み込むことで,識別グラフノード表現を学習する。
我々は、自閉症脳画像データ交換(ABIDE)とアルツハイマー病神経イメージングイニシアチブ(ADNI)という2つの大きなデータセット上の最近のベースライン手法と比較して、我々のモデルをベンチマークした。
論文 参考訳(メタデータ) (2023-11-13T14:36:29Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
不均一グラフニューラルネットワークは,グラフ表現学習において大きな可能性を秘めている。
我々は,PC-HGNという異種グラフ学習ネットワークのための関係中心のPooling and Convolutionを設計し,関係固有サンプリングと相互関係の畳み込みを実現する。
実世界の3つのデータセットにおける最先端グラフ学習モデルとの比較により,提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-31T08:43:32Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
本稿では,動的適応時間グラフ畳み込み(DASTGCN)モデルを提案する。
提案手法により,レイヤワイドグラフ構造学習モジュールによる脳領域間の動的接続のエンドツーエンド推論が可能となる。
我々は,安静時機能スキャンを用いて,英国ビオバンクのパイプラインを年齢・性別分類タスクとして評価した。
論文 参考訳(メタデータ) (2021-09-26T07:19:47Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。