論文の概要: Investigating Affective Use and Emotional Well-being on ChatGPT
- arxiv url: http://arxiv.org/abs/2504.03888v1
- Date: Fri, 04 Apr 2025 19:22:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:10:12.535174
- Title: Investigating Affective Use and Emotional Well-being on ChatGPT
- Title(参考訳): ChatGPTにおける情緒的幸福感と情緒的幸福感の検討
- Authors: Jason Phang, Michael Lampe, Lama Ahmad, Sandhini Agarwal, Cathy Mengying Fang, Auren R. Liu, Valdemar Danry, Eunhae Lee, Samantha W. T. Chan, Pat Pataranutaporn, Pattie Maes,
- Abstract要約: 本稿では,ChatGPTとのインタラクションがユーザの感情的幸福感,行動,経験に与える影響について検討する。
情緒的手がかりとして300万以上の会話を分析し,ChatGPTに対する認識から4,000人以上のユーザを調査した。
施設審査委員会(IRB)が承認したランダム化制御試験(RCT)を28日間に1,000人近い参加者で実施する。
- 参考スコア(独自算出の注目度): 32.797983866308755
- License:
- Abstract: As AI chatbots see increased adoption and integration into everyday life, questions have been raised about the potential impact of human-like or anthropomorphic AI on users. In this work, we investigate the extent to which interactions with ChatGPT (with a focus on Advanced Voice Mode) may impact users' emotional well-being, behaviors and experiences through two parallel studies. To study the affective use of AI chatbots, we perform large-scale automated analysis of ChatGPT platform usage in a privacy-preserving manner, analyzing over 3 million conversations for affective cues and surveying over 4,000 users on their perceptions of ChatGPT. To investigate whether there is a relationship between model usage and emotional well-being, we conduct an Institutional Review Board (IRB)-approved randomized controlled trial (RCT) on close to 1,000 participants over 28 days, examining changes in their emotional well-being as they interact with ChatGPT under different experimental settings. In both on-platform data analysis and the RCT, we observe that very high usage correlates with increased self-reported indicators of dependence. From our RCT, we find that the impact of voice-based interactions on emotional well-being to be highly nuanced, and influenced by factors such as the user's initial emotional state and total usage duration. Overall, our analysis reveals that a small number of users are responsible for a disproportionate share of the most affective cues.
- Abstract(参考訳): AIチャットボットが日々の生活に採用され、統合されるようになるにつれ、人間のようなAIや人為的AIがユーザに与える影響について疑問が投げかけられている。
本研究では,ChatGPT(Advanced Voice Mode)とのインタラクションが,ユーザの感情的幸福感,行動,体験に与える影響について,2つの並列研究を通して検討する。
AIチャットボットの情緒的利用を研究するために、我々は、ChatGPTプラットフォームの使用状況をプライバシー保護方法で大規模に自動分析し、感情的手がかりのための300万以上の会話を分析し、ChatGPTに対する認識について4000人以上のユーザを調査した。
モデル使用量と感情的幸福感との関連性を検討するため,実験環境下でのChatGPTと相互作用する際の感情的幸福感の変化について検討し,約1000人の参加者を対象にIRB(Institutional Review Board)が承認したランダム化コントロールトライアル(RCT)を28日間にわたって実施した。
プラットフォーム上でのデータ解析とRCTの両方において、非常に高い利用率と自己報告による依存性の指標の増加が相関している。
RCTでは、音声による対話が感情的幸福感に与える影響を高く評価し、ユーザの初歩的感情状態や総使用時間などの要因に影響されることが判明した。
総じて、我々の分析では、少数のユーザーが最も感情的な手がかりを不均等に共有していることが判明した。
関連論文リスト
- REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
本稿では、21日間のメッセージアプリ対話のコーパスであるREALTALKを紹介する。
EI属性とペルソナの整合性を比較し,現実世界の対話による課題を理解する。
その結果,モデルでは対話履歴のみからユーザをシミュレートすることが困難であり,特定のユーザチャットの微調整はペルソナのエミュレーションを改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T20:29:01Z) - Large Language Models Can Infer Personality from Free-Form User Interactions [0.0]
GPT-4は、パーソナリティを適度な精度で推測することができ、以前のアプローチよりも優れていた。
その結果,人格評価への直接的注力は,ユーザエクスペリエンスの低下を招いていないことがわかった。
予備的な分析は、人格推定の正確さは、社会デミノグラフィーのサブグループによってわずかに異なることを示唆している。
論文 参考訳(メタデータ) (2024-05-19T20:33:36Z) - A Linguistic Comparison between Human and ChatGPT-Generated Conversations [9.022590646680095]
この研究は、ChatGPTが生成した会話と人間の会話を比較して、言語問合せと単語数分析を取り入れている。
結果は,人間の対話における多様性と信頼度は高いが,ChatGPTは社会的プロセス,分析的スタイル,認知,注意的焦点,ポジティブな感情的トーンといったカテゴリーに優れていた。
論文 参考訳(メタデータ) (2024-01-29T21:43:27Z) - Can ChatGPT Read Who You Are? [10.577227353680994]
チェコ語で書かれたテキストを代表とする総合的なユーザスタディの結果を155人のサンプルで報告した。
本研究は,ChatGPTによる性格特性推定と人間による評価とを比較し,テキストから人格特性を推定する際のChatGPTの競争性能を報告する。
論文 参考訳(メタデータ) (2023-12-26T14:43:04Z) - Bias in Emotion Recognition with ChatGPT [8.660929270060146]
ChatGPTはテキストから感情を認識することができ、インタラクティブなチャットボット、データアノテーション、メンタルヘルス分析といった様々なアプリケーションの基礎となる。
これまでの研究では、感情分析におけるChatGPTの基本的な能力が示されていたが、よりニュアンスな感情認識におけるその性能はまだ検討されていない。
本稿では、データセットとラベルの選択の重要性と、ChatGPTの感情認識能力を高めるための微調整の可能性について述べる。
論文 参考訳(メタデータ) (2023-10-18T07:28:12Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
隠れ変数分離に基づく動的因果解離モデルを提案する。
このモデルは、対話の内容を効果的に分解し、感情の時間的蓄積を調べる。
具体的には,発話と隠れ変数の伝搬を推定する動的時間的ゆがみモデルを提案する。
論文 参考訳(メタデータ) (2023-09-13T12:58:09Z) - Deceptive AI Ecosystems: The Case of ChatGPT [8.128368463580715]
ChatGPTは人間のような反応を生成する能力で人気を博している。
本稿では,ChatGPTが社会的プレッシャーが開発・展開に影響を与える現実世界でどのように機能するかを検討する。
本稿では,ChatGPTの擬人的相互作用から生じる倫理的課題について考察する。
論文 参考訳(メタデータ) (2023-06-18T10:36:19Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Understanding How People Rate Their Conversations [73.17730062864314]
我々は、人々が会話エージェントとのインタラクションをどのように評価するかをよりよく理解するために研究を行う。
我々は、評価の変動を説明する変数として、同意性と外向性に焦点を当てる。
論文 参考訳(メタデータ) (2022-06-01T00:45:32Z) - Towards Persona-Based Empathetic Conversational Models [58.65492299237112]
共感的会話モデルは、多くのドメインにおけるユーザの満足度とタスク結果を改善することが示されている。
心理学において、ペルソナは人格と高い相関関係があることが示され、それによって共感に影響を及ぼす。
本研究では,ペルソナに基づく共感的会話に対する新たな課題を提案し,ペルソナが共感的反応に与える影響に関する最初の経験的研究を示す。
論文 参考訳(メタデータ) (2020-04-26T08:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。