論文の概要: Improving Offline Mixed-Criticality Scheduling with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2504.03994v1
- Date: Fri, 04 Apr 2025 23:28:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:02.545455
- Title: Improving Offline Mixed-Criticality Scheduling with Reinforcement Learning
- Title(参考訳): 強化学習によるオフライン混合臨界スケジューリングの改善
- Authors: Muhammad El-Mahdy, Nourhan Sakr, Rodrigo Carrasco,
- Abstract要約: 本稿では,異なる速度のプロセッサ上での混合臨界(MC)システムをスケジューリングするための,新しい強化学習(RL)手法を提案する。
このスケジューリング課題をMarkov Decision Process (MDP) としてモデル化することにより,リアルタイムMCシステムのほぼ最適スケジュールを生成することができるRLエージェントを開発した。
我々のRLベースのスケジューラは、システム全体の性能を維持しながら、ハイクリティカルなタスクを優先します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces a novel reinforcement learning (RL) approach to scheduling mixed-criticality (MC) systems on processors with varying speeds. Building upon the foundation laid by [1], we extend their work to address the non-preemptive scheduling problem, which is known to be NP-hard. By modeling this scheduling challenge as a Markov Decision Process (MDP), we develop an RL agent capable of generating near-optimal schedules for real-time MC systems. Our RL-based scheduler prioritizes high-critical tasks while maintaining overall system performance. Through extensive experiments, we demonstrate the scalability and effectiveness of our approach. The RL scheduler significantly improves task completion rates, achieving around 80% overall and 85% for high-criticality tasks across 100,000 instances of synthetic data and real data under varying system conditions. Moreover, under stable conditions without degradation, the scheduler achieves 94% overall task completion and 93% for high-criticality tasks. These results highlight the potential of RL-based schedulers in real-time and safety-critical applications, offering substantial improvements in handling complex and dynamic scheduling scenarios.
- Abstract(参考訳): 本稿では,異なる速度のプロセッサ上での混合臨界(MC)システムをスケジューリングするための,新しい強化学習(RL)手法を提案する。
[1] で構築された基礎の上に構築し、NP-hard として知られる非プリエンプティブなスケジューリング問題に対処するためにそれらの作業を拡張する。
このスケジューリング課題をMarkov Decision Process (MDP) としてモデル化することにより,リアルタイムMCシステムのほぼ最適スケジュールを生成することができるRLエージェントを開発した。
我々のRLベースのスケジューラは、システム全体の性能を維持しながら、ハイクリティカルなタスクを優先します。
広範な実験を通じて,我々のアプローチのスケーラビリティと有効性を示す。
RLスケジューラはタスク完了率を大幅に改善し、システム条件の異なる10万件の合成データと実データに対して、全体の80%、高臨界タスクに対して85%を達成した。
さらに、劣化のない安定条件下では、スケジューラは、全体的なタスク完了率94%、高臨界タスク93%を達成する。
これらの結果は、リアルタイムおよび安全クリティカルなアプリケーションにおけるRLベースのスケジューラの可能性を強調し、複雑なスケジューリングシナリオと動的スケジューリングシナリオの処理を大幅に改善する。
関連論文リスト
- Dependency-Aware CAV Task Scheduling via Diffusion-Based Reinforcement Learning [12.504232513881828]
動的無人航空機支援型コネクテッド自動運転車(CAV)のための新しい依存性を考慮したタスクスケジューリング手法を提案する。
平均タスク完了時間を最小化することを目的として,共同スケジューリング優先度とサブタスク割り当て最適化問題を定式化する。
本稿では,Synthetic DDQNをベースとしたSubtasks Schedulingという拡散型強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-27T11:07:31Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Scalable Multi-agent Reinforcement Learning for Factory-wide Dynamic Scheduling [14.947820507112136]
本稿では,MARL(Lead-follower multi-agent RL)の概念を適用して,望ましいコーディネーションを求める。
本稿では,エージェントのエラーによる生産能力の壊滅的損失を防止するためのルールベース変換アルゴリズムを提案する。
全体として、提案したMARLベースのスケジューリングモデルは、リアルタイムスケジューリング問題に対する有望な解決策を提供する。
論文 参考訳(メタデータ) (2024-09-20T15:16:37Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
本稿では、フレキシブルジョブショップスケジューリング問題(DRC-FJSSP)に深層強化学習(DRL)を適用したメメティックアルゴリズムを提案する。
産業における研究プロジェクトから、フレキシブルマシン、フレキシブルなヒューマンワーカー、作業能力、セットアップと処理操作、材料到着時間、材料製造の請求書の並列タスク、シーケンス依存のセットアップ時間、人間と機械のコラボレーションにおける(一部)自動化タスクを検討する必要性を認識します。
論文 参考訳(メタデータ) (2022-12-21T11:24:32Z) - Distributional Reinforcement Learning for Scheduling of (Bio)chemical
Production Processes [0.0]
強化学習(Reinforcement Learning, RL)は、最近、プロセスシステム工学と制御コミュニティから大きな注目を集めている。
本稿では,生産スケジューリング問題に共通して課される優先的制約と解離的制約に対処するRL手法を提案する。
論文 参考訳(メタデータ) (2022-03-01T17:25:40Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Critic Regularized Regression [70.8487887738354]
批判正規化回帰(CRR)形式を用いてデータからポリシーを学習するための新しいオフラインRLアルゴリズムを提案する。
CRRは驚くほどよく動作し、高次元の状態と行動空間を持つタスクにスケールする。
論文 参考訳(メタデータ) (2020-06-26T17:50:26Z) - DeepSoCS: A Neural Scheduler for Heterogeneous System-on-Chip (SoC)
Resource Scheduling [0.0]
システム・オン・チップ(SoC)システムのための新しいスケジューリングソリューションを提案する。
我々のDeep Reinforcement Learning (DRL)ベースのスケジューリング(DeepSoCS)はルールベースのスケジューラの脆さを克服する。
論文 参考訳(メタデータ) (2020-05-15T17:31:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。