A Survey of Pathology Foundation Model: Progress and Future Directions
- URL: http://arxiv.org/abs/2504.04045v2
- Date: Wed, 21 May 2025 10:27:37 GMT
- Title: A Survey of Pathology Foundation Model: Progress and Future Directions
- Authors: Conghao Xiong, Hao Chen, Joseph J. Y. Sung,
- Abstract summary: Computational pathology involves analyzing whole slide images for automated cancer diagnosis.<n>Recent Pathology Foundation Models (PFMs), pretrained on large-scale histopathology data, have significantly enhanced both the extractor and aggregator.<n>We present a hierarchical taxonomy organizing PFMs through a top-down philosophy applicable to foundation model analysis in any domain.
- Score: 3.009351592961681
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational pathology, which involves analyzing whole slide images for automated cancer diagnosis, relies on multiple instance learning, where performance depends heavily on the feature extractor and aggregator. Recent Pathology Foundation Models (PFMs), pretrained on large-scale histopathology data, have significantly enhanced both the extractor and aggregator, but they lack a systematic analysis framework. In this survey, we present a hierarchical taxonomy organizing PFMs through a top-down philosophy applicable to foundation model analysis in any domain: model scope, model pretraining, and model design. Additionally, we systematically categorize PFM evaluation tasks into slide-level, patch-level, multimodal, and biological tasks, providing comprehensive benchmarking criteria. Our analysis identifies critical challenges in both PFM development (pathology-specific methodology, end-to-end pretraining, data-model scalability) and utilization (effective adaptation, model maintenance), paving the way for future directions in this promising field. Resources referenced in this survey are available at https://github.com/BearCleverProud/AwesomeWSI.
Related papers
- Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping [1.927195358774599]
Pretraining on large-scale, in-domain datasets grants histopathology foundation models (FM) the ability to learn task-agnostic data representations.<n>In computational pathology, automated whole slide image analysis requires multiple instance learning (MIL) frameworks due to the gigapixel scale of the slides.<n>Our work presents a novel benchmark for evaluating histopathology FMs as patch-level feature extractors within a MIL classification framework.
arXiv Detail & Related papers (2025-06-23T14:12:16Z) - CPathAgent: An Agent-based Foundation Model for Interpretable High-Resolution Pathology Image Analysis Mimicking Pathologists' Diagnostic Logic [12.75486013022629]
We introduce CPathAgent, an agent-based model that mimics pathologists' reasoning processes by autonomously executing zoom-in/out and navigation operations.<n>CPathAgent consistently outperforms existing approaches across three scales of benchmarks.
arXiv Detail & Related papers (2025-05-26T20:22:19Z) - PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDC is a machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models.<n>This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task.
arXiv Detail & Related papers (2025-05-08T18:15:38Z) - Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis [4.803310914375717]
This study evaluates three vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks.
The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs.
arXiv Detail & Related papers (2025-04-22T17:20:34Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Revisiting Automatic Data Curation for Vision Foundation Models in Digital Pathology [41.34847597178388]
Vision foundation models (FMs) learn to represent histological features in highly heterogeneous tiles extracted from whole-slide images.
We investigate the potential of unsupervised automatic data curation at the tile-level, taking into account 350 million tiles.
arXiv Detail & Related papers (2025-03-24T14:23:48Z) - Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.
These models can be adapted to various applications such as question answering and visual understanding.
This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - A Survey on Computational Pathology Foundation Models: Datasets, Adaptation Strategies, and Evaluation Tasks [22.806228975730008]
Computational pathology foundation models (CPathFMs) have emerged as a powerful approach for analyzing histological data.<n>These models have demonstrated promise in automating complex pathology tasks such as segmentation, classification, and biomarker discovery.<n>However, the development of CPathFMs presents significant challenges, such as limited data accessibility, high variability across datasets, and lack of standardized evaluation benchmarks.
arXiv Detail & Related papers (2025-01-27T01:27:59Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.<n>A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.<n>This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Towards Large-Scale Training of Pathology Foundation Models [1.5861468117231254]
We release and make publicly available the first batch of our pathology FMs trained on open-access TCGA whole slide images.
The experimental evaluation shows that our models reach state-of-the-art performance on various patch-level downstream tasks.
We present an open-source framework designed for the consistent evaluation of pathology FMs across various downstream tasks.
arXiv Detail & Related papers (2024-03-24T21:34:36Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) focuses on the research, modification, and design of foundation models (FM) based on the model interface.<n>The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing.<n>This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM.
arXiv Detail & Related papers (2023-10-12T10:20:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.