CPathAgent: An Agent-based Foundation Model for Interpretable High-Resolution Pathology Image Analysis Mimicking Pathologists' Diagnostic Logic
- URL: http://arxiv.org/abs/2505.20510v1
- Date: Mon, 26 May 2025 20:22:19 GMT
- Title: CPathAgent: An Agent-based Foundation Model for Interpretable High-Resolution Pathology Image Analysis Mimicking Pathologists' Diagnostic Logic
- Authors: Yuxuan Sun, Yixuan Si, Chenglu Zhu, Kai Zhang, Zhongyi Shui, Bowen Ding, Tao Lin, Lin Yang,
- Abstract summary: We introduce CPathAgent, an agent-based model that mimics pathologists' reasoning processes by autonomously executing zoom-in/out and navigation operations.<n>CPathAgent consistently outperforms existing approaches across three scales of benchmarks.
- Score: 12.75486013022629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in computational pathology have led to the emergence of numerous foundation models. However, these approaches fail to replicate the diagnostic process of pathologists, as they either simply rely on general-purpose encoders with multi-instance learning for classification or directly apply multimodal models to generate reports from images. A significant limitation is their inability to emulate the diagnostic logic employed by pathologists, who systematically examine slides at low magnification for overview before progressively zooming in on suspicious regions to formulate comprehensive diagnoses. To address this gap, we introduce CPathAgent, an innovative agent-based model that mimics pathologists' reasoning processes by autonomously executing zoom-in/out and navigation operations across pathology images based on observed visual features. To achieve this, we develop a multi-stage training strategy unifying patch-level, region-level, and whole-slide capabilities within a single model, which is essential for mimicking pathologists, who require understanding and reasoning capabilities across all three scales. This approach generates substantially more detailed and interpretable diagnostic reports compared to existing methods, particularly for huge region understanding. Additionally, we construct an expert-validated PathMMU-HR$^{2}$, the first benchmark for huge region analysis, a critical intermediate scale between patches and whole slides, as diagnosticians typically examine several key regions rather than entire slides at once. Extensive experiments demonstrate that CPathAgent consistently outperforms existing approaches across three scales of benchmarks, validating the effectiveness of our agent-based diagnostic approach and highlighting a promising direction for the future development of computational pathology.
Related papers
- GRASPing Anatomy to Improve Pathology Segmentation [67.98147643529309]
We introduce GRASP, a modular plug-and-play framework that enhances pathology segmentation models.<n>We evaluate GRASP on two PET/CT datasets, conduct systematic ablation studies, and investigate the framework's inner workings.
arXiv Detail & Related papers (2025-08-05T12:26:36Z) - Evidence-based diagnostic reasoning with multi-agent copilot for human pathology [7.976907866539546]
Current multimodal large language models (MLLMs) in computational pathology face limitations.<n>We introduce PathChat+, a new MLLM specifically designed for human pathology, trained on over 1 million diverse, pathology-specific instruction samples.<n>We also present SlideSeek, a reasoning-enabled multi-agent AI system leveraging PathChat+ to autonomously evaluate gigapixel whole-slide images.
arXiv Detail & Related papers (2025-06-26T03:02:16Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - A Survey of Pathology Foundation Model: Progress and Future Directions [3.009351592961681]
Computational pathology involves analyzing whole slide images for automated cancer diagnosis.<n>Recent Pathology Foundation Models (PFMs), pretrained on large-scale histopathology data, have significantly enhanced both the extractor and aggregator.<n>We present a hierarchical taxonomy organizing PFMs through a top-down philosophy applicable to foundation model analysis in any domain.
arXiv Detail & Related papers (2025-04-05T03:44:09Z) - Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Pathology Analysis [37.11302829771659]
Large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy in pathology image analysis.<n>We propose two innovative strategies: the mixed task-guided feature enhancement, and the prompt-guided detail feature completion.<n>We trained the pathology-specialized LVLM, OmniPath, which significantly outperforms existing methods in diagnostic accuracy and efficiency.
arXiv Detail & Related papers (2024-12-12T18:07:23Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - PathoWAve: A Deep Learning-based Weight Averaging Method for Improving Domain Generalization in Histopathology Images [13.362177469092963]
We introduce Pathology Weight Averaging (PathoWAve) to tackle domain shift phenomenon in histopathology image analysis.
Our results on Camelyon17 WILDS dataset demonstrate PathoWAve's superiority over previous proposed methods.
arXiv Detail & Related papers (2024-06-21T23:25:44Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - PathAsst: A Generative Foundation AI Assistant Towards Artificial
General Intelligence of Pathology [15.419350834457136]
We present PathAsst, a multimodal generative foundation AI assistant to revolutionize diagnostic and predictive analytics in pathology.
The development of PathAsst involves three pivotal steps: data acquisition, CLIP model adaptation, and the training of PathAsst's multimodal generative capabilities.
The experimental results of PathAsst show the potential of harnessing AI-powered generative foundation model to improve pathology diagnosis and treatment processes.
arXiv Detail & Related papers (2023-05-24T11:55:50Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.