論文の概要: Can You Count to Nine? A Human Evaluation Benchmark for Counting Limits in Modern Text-to-Video Models
- arxiv url: http://arxiv.org/abs/2504.04051v1
- Date: Sat, 05 Apr 2025 04:13:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:15:26.522226
- Title: Can You Count to Nine? A Human Evaluation Benchmark for Counting Limits in Modern Text-to-Video Models
- Title(参考訳): 9つ数えられるか? 現代テキスト・ビデオモデルにおける限界数評価ベンチマーク
- Authors: Xuyang Guo, Zekai Huang, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, Jiahao Zhang,
- Abstract要約: T2VCountBenchは2025年現在、SOTAのテキスト・ビデオ・モデルのカウント能力を評価するための特殊なベンチマークである。
実験の結果,既存のモデルはすべて基本的な数値処理に苦しむことが明らかとなった。
本研究は,現状のテキスト・ビデオ生成における重要な課題を取り上げ,基礎的数値制約への順応性向上を目的とした今後の研究への洞察を提供する。
- 参考スコア(独自算出の注目度): 19.51519289698524
- License:
- Abstract: Generative models have driven significant progress in a variety of AI tasks, including text-to-video generation, where models like Video LDM and Stable Video Diffusion can produce realistic, movie-level videos from textual instructions. Despite these advances, current text-to-video models still face fundamental challenges in reliably following human commands, particularly in adhering to simple numerical constraints. In this work, we present T2VCountBench, a specialized benchmark aiming at evaluating the counting capability of SOTA text-to-video models as of 2025. Our benchmark employs rigorous human evaluations to measure the number of generated objects and covers a diverse range of generators, covering both open-source and commercial models. Extensive experiments reveal that all existing models struggle with basic numerical tasks, almost always failing to generate videos with an object count of 9 or fewer. Furthermore, our comprehensive ablation studies explore how factors like video style, temporal dynamics, and multilingual inputs may influence counting performance. We also explore prompt refinement techniques and demonstrate that decomposing the task into smaller subtasks does not easily alleviate these limitations. Our findings highlight important challenges in current text-to-video generation and provide insights for future research aimed at improving adherence to basic numerical constraints.
- Abstract(参考訳): 生成モデルは、ビデオLDMやStable Video Diffusionのようなモデルが、テキストインストラクションからリアルで映画レベルのビデオを生成する、テキスト・ツー・ビデオ生成など、さまざまなAIタスクにおいて大きな進歩をもたらした。
これらの進歩にもかかわらず、現在のテキスト・ビデオモデルは、人間の命令を確実に追従する上で、特に単純な数値的制約に固執する上で、根本的な課題に直面している。
本研究では,2025年現在,SOTAテキスト・ビデオ・モデルのカウント能力を評価するための特別なベンチマークであるT2VCountBenchを紹介する。
我々のベンチマークでは、生成されたオブジェクトの数を測定するために厳密な人間評価を採用し、オープンソースのモデルと商用モデルの両方をカバーする多様なジェネレータをカバーしています。
大規模な実験では、既存のすべてのモデルが基本的な数値処理に苦労しており、ほとんど常にオブジェクト数9以下のビデオを生成していないことが判明した。
さらに、ビデオスタイル、時間的ダイナミクス、多言語入力などの要因がカウントパフォーマンスにどのように影響するかを網羅的に検討した。
また,課題を小さなサブタスクに分解することで,これらの制約を緩和することができないことを示す。
本研究は,現状のテキスト・ビデオ生成における重要な課題を取り上げ,基礎的数値制約への順応性向上を目的とした今後の研究への洞察を提供する。
関連論文リスト
- HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data [55.739633494946204]
我々は,ビデオMLLMの評価において,ギャップを埋めるために巧みに構築された,革新的なベンチマークであるHumanVBenchを紹介する。
HumanVBenchは、内的感情と外的表現、静的、動的、基本的、複雑にまたがる2つの主要な側面と、単一モーダルとクロスモーダルという2つの側面を慎重に検討する16のタスクで構成されている。
22のSOTAビデオMLLMの総合評価では、特にクロスモーダルおよび感情知覚において、現在のパフォーマンスに顕著な制限が示される。
論文 参考訳(メタデータ) (2024-12-23T13:45:56Z) - Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data [19.210471935816273]
本稿では,映像テキスト理解のための新しい評価タスク,すなわち,対実的拡張データ(RCAD)と新しいFeint6Kデータセットを提案する。
新しい評価タスクを成功させるためには、モデルはクロスフレーム推論からビデオの包括的理解を導き出さなければならない。
提案手法は,複数のビデオテキストモデルに適用した場合に,より識別的な動作埋め込みを学習し,Feint6Kの結果を改善する。
論文 参考訳(メタデータ) (2024-07-18T01:55:48Z) - Chrono: A Simple Blueprint for Representing Time in MLLMs [34.036784478999245]
ビデオ言語モデルにおける文脈的・時間的理解の課題について,ビデオにおける時間的局所化の課題を探求することによって検討する。
画像テキスト事前学習MLLMに適用可能なユニバーサルシーケンス青写真であるChronoを紹介する。
我々は、最も広く使われているベンチマークであるCharades-STA、QVHighlights、ActivityNet Captions、NeXT-GQA上でのグラウンドドビデオ質問応答において、新しいSOTAを実現する。
論文 参考訳(メタデータ) (2024-06-26T06:59:09Z) - Towards Multi-Task Multi-Modal Models: A Video Generative Perspective [5.495245220300184]
この論文は、さまざまな条件下でビデオやその他のモダリティを生成するマルチタスクモデルを構築するために、我々の努力を年代記している。
我々は、視覚的観察と解釈可能な語彙の双方向マッピングのための新しいアプローチを公表する。
私たちのスケーラブルなビジュアルトークン表現は、生成、圧縮、理解タスクで有益であることが証明されます。
論文 参考訳(メタデータ) (2024-05-26T23:56:45Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
我々は、CinePileという新しいデータセットとベンチマークを提示する。
包括的データセットは305,000の多重選択質問(MCQ)から構成されており、様々な視覚的・マルチモーダル的な側面をカバーしている。
トレーニングスプリットに関して、オープンソースのVideo-LLMを微調整し、データセットのテストスプリット上で、オープンソースとプロプライエタリなビデオ中心LLMの両方を評価しました。
論文 参考訳(メタデータ) (2024-05-14T17:59:02Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
本稿では,大規模ビデオ要約データセットを生成するための,自動化されたスケーラブルなパイプラインを提案する。
我々は既存のアプローチの限界を分析し、それらに効果的に対処する新しいビデオ要約モデルを提案する。
我々の研究は、プロが注釈付けした高品質の要約を持つ1200本の長編ビデオを含む新しいベンチマークデータセットも提示した。
論文 参考訳(メタデータ) (2024-04-04T11:59:06Z) - EvalCrafter: Benchmarking and Evaluating Large Video Generation Models [70.19437817951673]
これらのモデルはしばしば、マルチアスペクト能力を持つ非常に大きなデータセットで訓練されているので、単純な指標から大きな条件生成モデルを判断することは困難である、と我々は主張する。
我々のアプローチは、テキスト・ツー・ビデオ生成のための700のプロンプトの多種多様な包括的リストを作成することである。
そこで我々は、視覚的品質、コンテンツ品質、動作品質、テキスト・ビデオアライメントの観点から、慎重に設計されたベンチマークに基づいて、最先端のビデオ生成モデルを評価する。
論文 参考訳(メタデータ) (2023-10-17T17:50:46Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
マルチテンポラル言語モデル(LM)は、最近ビデオ上の高レベル推論タスクにおいて有望な性能を示した。
オブジェクト検出,再識別,追跡など,低レベルなサロゲートタスクに対するLMエンドツーエンドのトレーニングを提案し,低レベルな視覚能力を備えたモデルを実現する。
我々は、ACRE、CATER、Some-Else、STARデータセットからの多様な視覚的推論タスクにおけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-06-30T16:31:14Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
そこで本研究では,自然言語による記述を生成するために長編動画を音声化し,生成したストーリーの映像理解タスクを実行することを提案する。
提案手法は,ゼロショットであるにもかかわらず,ビデオ理解のための教師付きベースラインよりもはるかに優れた結果が得られる。
ストーリー理解ベンチマークの欠如を緩和するため,我々は,説得戦略の識別に関する計算社会科学における重要な課題に関する最初のデータセットを公開している。
論文 参考訳(メタデータ) (2023-05-16T19:13:11Z) - Look Before you Speak: Visually Contextualized Utterances [88.58909442073858]
ビデオ中の発話を視覚的フレームと書き起こされた音声の両方を文脈として予測するタスクを作成する。
オンラインで多数の指導ビデオを活用することで、手動のアノテーションを必要とせずに、このタスクを大規模に解決するためのモデルを訓練する。
本モデルは,多数のダウンストリームビデオQAベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-12-10T14:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。