論文の概要: Reasoning on Multiple Needles In A Haystack
- arxiv url: http://arxiv.org/abs/2504.04150v1
- Date: Sat, 05 Apr 2025 11:58:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:15:06.429457
- Title: Reasoning on Multiple Needles In A Haystack
- Title(参考訳): ヘイスタックにおける複数針の推論
- Authors: Yidong Wang,
- Abstract要約: 直接質問をフィルタリングすることで,メモリベースの回答問題に対処する。
この知見に基づいて,マルチラウンド拡張のためのリフレクション機構を導入する。
生成した反復的思考プロセスを使用してモデルをトレーニングし、パフォーマンスの劣化を軽減する。
- 参考スコア(独自算出の注目度): 9.765859280987053
- License:
- Abstract: The Needle In A Haystack (NIAH) task has been widely used to evaluate the long-context question-answering capabilities of Large Language Models (LLMs). However, its reliance on simple retrieval limits its effectiveness. To address this limitation, recent studies have introduced the Multiple Needles In A Haystack Reasoning (MNIAH-R) task, which incorporates supporting documents (Multiple needles) of multi-hop reasoning tasks into a distracting context (Haystack}). Despite this advancement, existing approaches still fail to address the issue of models providing direct answers from internal knowledge, and they do not explain or mitigate the decline in accuracy as context length increases. In this paper, we tackle the memory-based answering problem by filtering out direct-answer questions, and we reveal that performance degradation is primarily driven by the reduction in the length of the thinking process as the input length increases. Building on this insight, we decompose the thinking process into retrieval and reasoning stages and introduce a reflection mechanism for multi-round extension. We also train a model using the generated iterative thinking process, which helps mitigate the performance degradation. Furthermore, we demonstrate the application of this retrieval-reflection capability in mathematical reasoning scenarios, improving GPT-4o's performance on AIME2024.
- Abstract(参考訳): Needle In A Haystack (NIAH) タスクは、Large Language Models (LLM) の長文質問応答能力を評価するために広く使われている。
しかし、単純な検索に依存しているため、その有効性は制限される。
この制限に対処するため、近年の研究では、マルチホップ推論タスクのサポートドキュメント(複数針)を邪魔な状況(Haystack})に組み込むMNIAH-Rタスクを導入している。
この進歩にもかかわらず、既存のアプローチは、内部知識から直接の回答を提供するモデルの問題にまだ対処できず、文脈の長さが増加するにつれて精度の低下を説明または緩和しない。
本稿では,直接回答質問をフィルタリングすることで,メモリベースの解答問題に取り組み,入力長が大きくなるにつれて思考プロセスの長さが減少することが主な原因であることを示す。
この知見に基づいて、思考プロセスを検索と推論段階に分解し、マルチラウンド拡張のためのリフレクション機構を導入する。
また、生成した反復的思考プロセスを使ってモデルをトレーニングし、パフォーマンスの劣化を軽減するのに役立ちます。
さらに,この検索・リフレクション機能を数学的推論シナリオに適用し,AIME2024におけるGPT-4oの性能を改善した。
関連論文リスト
- DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
我々はマルコフ決定過程(MDP)として検索強化推論をモデル化するDeepRAGを提案する。
クエリを反復的に分解することで、DeepRAGは外部知識を取得するか、あるいは各ステップでパラメトリック推論に依存するかを動的に決定する。
実験の結果、DeepRAGは解答精度を21.99%向上させ、検索強化推論の最適化の有効性を示した。
論文 参考訳(メタデータ) (2025-02-03T08:22:45Z) - Review-Then-Refine: A Dynamic Framework for Multi-Hop Question Answering with Temporal Adaptability [19.722009684115434]
Retrieve-augmented Generation (RAG) フレームワークがマルチホップ質問応答(QA)タスクの有望なソリューションとして登場した。
既存のRAGフレームワークは、通常、検索対象のパラダイムに従っており、時間情報を持つマルチホップQAと競合することが多い。
本稿では,マルチホップQAシナリオにおけるLLMの性能向上を目的とした,Review-then-refineと呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T17:48:23Z) - Enhancing Answer Attribution for Faithful Text Generation with Large Language Models [5.065947993017158]
本稿では,より独立的で文脈的なクレームを生成できる新しい手法を提案する。
新しい手法が評価され,回答帰属成分の性能が向上することが示されている。
論文 参考訳(メタデータ) (2024-10-22T15:37:46Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
二重機能要約器を備えたReSPと呼ばれる新しい反復RAG法を提案する。
マルチホップ質問応答HotpotQAと2WikiMultihopQAの実験結果から,本手法が最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-18T02:19:00Z) - Investigating Video Reasoning Capability of Large Language Models with Tropes in Movies [69.28082193942991]
本稿では、これまで見過ごされていた2つの重要なビデオ推論スキルを探索するためのテストベッドとして設計された、新しいデータセットであるTropes in Movies (TiM)を紹介する。
映画ストーリーテリングのトポロジを利用して、TiMは最先端のLCMベースのアプローチの推論能力を評価する。
これらの欠陥に対処するために、FEVoRI(Face-Enhanced Viper of Role Interactions)とConQueR(Context Query Reduction)を提案する。
論文 参考訳(メタデータ) (2024-06-16T12:58:31Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
最近の研究は、複数の推論チェーンをサンプリングし、応答周波数に基づいてアンサンブルすることで、Large Language Models(LLMs)の推論性能を向上させる。
このアプローチは、正しい答えが少数派である場合に失敗する。
階層的推論集約フレームワークAoRを導入し、推論連鎖の評価に基づいて回答を選択する。
論文 参考訳(メタデータ) (2024-05-21T17:12:19Z) - RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback [19.28222902440827]
大規模言語モデル(LLM)は多くのタスクにおいて例外的な性能を示すが、それでもパラメータに格納された知識に大きく依存している。
Retrieval-augmented Generation (RAG)メソッドは、外部知識を統合することでこの問題に対処する。
本稿では、反復的にタスクを分解し、3つのサブモジュールで処理し、モデルの問題解決能力を向上するフレームワークであるRetrieval Augmented Iterative Self-Feedback (RA-ISF)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:01:05Z) - ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.508669199496474]
外部知識に基づいて推論と行動を行うReAct-style LLMエージェントを開発した。
エージェントをReSTライクな手法で改良し,従来の軌道上で反復的に訓練する。
引き起こされた大きなモデルから始まり、アルゴリズムのたった2イテレーションの後に、微調整された小さなモデルを生成することができる。
論文 参考訳(メタデータ) (2023-12-15T18:20:15Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Reasoning Circuits: Few-shot Multihop Question Generation with
Structured Rationales [11.068901022944015]
連鎖論理生成は多段階推論タスクの性能を向上させることが示されている。
極めて低い監督体制下でのマルチホップ質問生成にチェーン・オブ・インスパイアされた構造的合理的生成を適用するための新しい枠組みを導入する。
論文 参考訳(メタデータ) (2022-11-15T19:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。