論文の概要: D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance
- arxiv url: http://arxiv.org/abs/2412.17632v2
- Date: Sun, 30 Mar 2025 03:52:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 15:20:31.410153
- Title: D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance
- Title(参考訳): D-Judge:我々はどこまで遠いのか?マルチモーダル誘導によるAI合成画像と自然画像の相違評価
- Authors: Renyang Liu, Ziyu Lyu, Wei Zhou, See-Kiong Ng,
- Abstract要約: AI-Natural Image Discrepancy accessing benchmark(textitD-Judge)を導入する。
我々は、テキスト・トゥ・イメージ(T2I)、画像・トゥ・イメージ(I2I)、テキスト・アンド・イメージ(TI2I)プロンプトを用いて、5000の自然画像と4万以上のAIGIを9つのモデルで生成したデータセットであるtextitD-ANIを構築した。
本フレームワークは, 画像品質, セマンティックアライメント, 美的魅力, 下流適用性, 人間の検証の5次元にわたる相違性を評価する。
- 参考スコア(独自算出の注目度): 19.760989919485894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Artificial Intelligence Generated Content (AIGC), distinguishing AI-synthesized images from natural ones remains a key challenge. Despite advancements in generative models, significant discrepancies persist. To systematically investigate and quantify these discrepancies, we introduce an AI-Natural Image Discrepancy accessing benchmark (\textit{D-Judge}) aimed at addressing the critical question: \textit{how far are AI-generated images (AIGIs) from truly realistic images?} We construct \textit{D-ANI}, a dataset with 5,000 natural images and over 440,000 AIGIs generated by nine models using Text-to-Image (T2I), Image-to-Image (I2I), and Text and Image-to-Image (TI2I) prompts. Our framework evaluates the discrepancy across five dimensions: naive image quality, semantic alignment, aesthetic appeal, downstream applicability, and human validation. Results reveal notable gaps, emphasizing the importance of aligning metrics with human judgment. Source code and datasets are available at https://shorturl.at/l83W2.
- Abstract(参考訳): AIGC(Artificial Intelligence Generated Content)では、AI合成画像と自然画像とを区別することが重要な課題である。
生成モデルの進歩にもかかわらず、大きな相違は持続する。
これらの不一致を体系的に調査し、定量化するために、批判的な問題に対処することを目的としたAI-Natural Image Discrepancy accessing benchmark (\textit{D-Judge})を導入する。
We construct \textit{D-ANI}, a dataset with 5,000 natural image and 440,000 AIGIs generated by 9 models using Text-to-Image (T2I), Image-to- Image (I2I), and Text and Image-to- Image (TI2I) prompts。
本フレームワークは, 画像品質, セマンティックアライメント, 美的魅力, 下流適用性, 人間の検証の5次元にわたる相違性を評価する。
結果は、指標と人間の判断を一致させることの重要性を強調し、顕著なギャップを明らかにした。
ソースコードとデータセットはhttps://shorturl.at/l83W2.comで入手できる。
関連論文リスト
- Could AI Trace and Explain the Origins of AI-Generated Images and Text? [53.11173194293537]
AI生成コンテンツは、現実の世界ではますます普及している。
敵は、大規模なマルチモーダルモデルを利用して、倫理的または法的基準に違反した画像を作成するかもしれない。
ペーパーレビュアーは、大きな言語モデルを誤用して、真の知的努力なしにレビューを生成する。
論文 参考訳(メタデータ) (2025-04-05T20:51:54Z) - CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI [58.35348718345307]
実際の画像とAI生成画像を区別する現在の取り組みには、一般化が欠如している可能性がある。
既存のセマンティック機能を強化した新しいフレームワークCo-Spyを提案する。
また、5つの実画像データセットと22の最先端生成モデルからなる包括的データセットであるCo-Spy-Benchを作成します。
論文 参考訳(メタデータ) (2025-03-24T01:59:29Z) - DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps [0.0]
DejAIvuは、リアルタイムAI生成画像検出と唾液度に基づく説明性を組み合わせたChrome Webエクステンションである。
当社のアプローチでは、効率的なブラウザ内推論、勾配に基づく唾液度分析、シームレスなユーザエクスペリエンスを統合し、AI検出が透過的かつ解釈可能であることを保証しています。
論文 参考訳(メタデータ) (2025-02-12T22:24:49Z) - AI-generated Image Quality Assessment in Visual Communication [72.11144790293086]
AIGI-VCは、視覚コミュニケーションにおけるAI生成画像の品質評価データベースである。
データセットは、14の広告トピックと8つの感情タイプにまたがる2500のイメージで構成されている。
粗い人間の嗜好アノテーションときめ細かい嗜好記述を提供し、選好予測、解釈、推論におけるIQAメソッドの能力をベンチマークする。
論文 参考訳(メタデータ) (2024-12-20T08:47:07Z) - Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI) [5.8695051911828555]
最近のAI生成画像検出(AGID)には、CNN検出、NPR、DM画像検出、フェイク画像検出、DIRE、LASTED、GAN画像検出、AIDE、SP、DRCT、RINE、OCC-CLIP、De-Fake、Deep Fake Detectionが含まれる。
本稿では,テキスト・ツー・イメージ・モデルによって生成される130K画像からなるベンチマークであるVisual Counter Turing Test (VCT2)を紹介する。
VCT$2$ベンチマークで前述のAGID技術の性能を評価し、AI生成の検出におけるその非効率性を強調した。
論文 参考訳(メタデータ) (2024-11-24T06:03:49Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
本稿では,AIによる画像検出の課題が解決されたかどうかの検査を行う。
既存の手法の一般化を定量化するために,Chameleonデータセット上で,既製のAI生成画像検出器を9つ評価した。
複数の専門家が同時に視覚的アーチファクトやノイズパターンを抽出するAI生成画像検出装置(AID)を提案する。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery [0.0]
AI生成画像を検出するツールを開発することが重要である。
本稿では、画像とフーリエ周波数分解の両方を入力として扱うデュアルブランチニューラルネットワークアーキテクチャを提案する。
提案モデルでは,CIFAKEデータセットの精度が94%向上し,従来のML手法やCNNよりも優れていた。
論文 参考訳(メタデータ) (2024-06-19T16:42:04Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
我々はAI生成の全方位画像IQAデータベースAIIGCOIQA2024を構築した。
3つの視点から人間の視覚的嗜好を評価するために、主観的IQA実験を行った。
我々は,データベース上での最先端IQAモデルの性能を評価するためのベンチマーク実験を行った。
論文 参考訳(メタデータ) (2024-04-01T10:08:23Z) - Exploring the Naturalness of AI-Generated Images [59.04528584651131]
我々は、AI生成画像の視覚的自然性をベンチマークし、評価する第一歩を踏み出した。
本研究では,人間の評価を整列するAGIの自然性を自動予測するジョイント・オブジェクト・イメージ・ナチュラルネス評価器(JOINT)を提案する。
その結果,JOINTは自然性評価において,より主観的に一貫した結果を提供するために,ベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2023-12-09T06:08:09Z) - PKU-I2IQA: An Image-to-Image Quality Assessment Database for AI
Generated Images [1.6031185986328562]
我々はPKU-I2IQAという人間の知覚に基づく画像から画像へのAIGCIQAデータベースを構築した。
本研究では,非参照画像品質評価法に基づくNR-AIGCIQAとフル参照画像品質評価法に基づくFR-AIGCIQAの2つのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2023-11-27T05:53:03Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
我々は,AI生成画像がテキスト画像検索モデルに目に見えない関連性バイアスをもたらすことを示す。
検索モデルのトレーニングデータにAI生成画像を含めると、目に見えない関連性バイアスが増す。
本研究では,目に見えない関連バイアスを軽減するための効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:22:58Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
本稿では,コンピュータビジョンによるAI生成画像の認識能力を高めることを提案する。
写真が本物かAIによって生成されるかに関して、バイナリ分類問題として存在する2つのデータセット。
本研究では,畳み込みニューラルネットワーク(CNN)を用いて画像をリアルとフェイクの2つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-03-24T16:33:06Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。