Machine Learning Classification Methods and Portfolio Allocation: An
Examination of Market Efficiency
- URL: http://arxiv.org/abs/2108.02283v1
- Date: Wed, 4 Aug 2021 20:48:27 GMT
- Title: Machine Learning Classification Methods and Portfolio Allocation: An
Examination of Market Efficiency
- Authors: Yang Bai and Kuntara Pukthuanthong
- Abstract summary: We design a novel framework to examine market efficiency through out-of-sample (OOS) predictability.
We frame the asset pricing problem as a machine learning classification problem and construct classification models to predict return states.
The prediction-based portfolios beat the market with significant OOS economic gains.
- Score: 3.3343612552681945
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We design a novel framework to examine market efficiency through
out-of-sample (OOS) predictability. We frame the asset pricing problem as a
machine learning classification problem and construct classification models to
predict return states. The prediction-based portfolios beat the market with
significant OOS economic gains. We measure prediction accuracies directly. For
each model, we introduce a novel application of binomial test to test the
accuracy of 3.34 million return state predictions. The tests show that our
models can extract useful contents from historical information to predict
future return states. We provide unique economic insights about OOS
predictability and machine learning models.
Related papers
- Overparametrized models with posterior drift [0.0]
This paper investigates the impact of posterior drift on out-of-sample forecasting accuracy in overparametrized machine learning models.<n>For the average investor, we find that focusing on holding periods of 15 years can generate very heterogeneous returns.<n>All in all, our findings tend to recommend cautiousness when resorting to large linear models for stock market predictions.
arXiv Detail & Related papers (2025-06-30T08:31:15Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework in Large Language Models (LLMs)
We derive novel metrics with high-probability guarantees concerning the output distribution of a model.
Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Short-Term Stock Price Forecasting using exogenous variables and Machine
Learning Algorithms [3.2732602885346576]
This research paper compares four machine learning models and their accuracy in forecasting three well-known stocks traded in the NYSE from March 2020 to May 2022.
We deploy, develop, and tune XGBoost, Random Forest, Multi-layer Perceptron, and Support Vector Regression models.
Using a training data set of 240 trading days, we find that XGBoost gives the highest accuracy despite running longer.
arXiv Detail & Related papers (2023-05-17T07:04:32Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Application of supervised learning models in the Chinese futures market [0.0]
This paper builds a supervised learning model to predict the trend of futures prices and then designs a trading strategy based on the prediction results.
The Precision, Recall and F1-score of the classification problem show that our model can meet the accuracy requirements for the classification of futures price movements.
arXiv Detail & Related papers (2023-03-08T13:56:53Z) - Empirical Asset Pricing via Ensemble Gaussian Process Regression [4.281723404774889]
Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference.<n>We find that our method dominates existing machine learning models statistically and economically.<n>It appeals to an uncertainty averse investor and significantly dominates the equal- and value-weighted prediction-sorted portfolios, which outperform the S&P 500.
arXiv Detail & Related papers (2022-12-02T09:37:29Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
This work presents an evaluation of Machine Unlearning algorithms based on uncertainty.
This is the first definition of a general evaluation of our best knowledge.
arXiv Detail & Related papers (2022-08-23T09:37:31Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
We investigate three machine learning algorithms: Feed-forward Neural Network (FNN), Random Forest (RF) and Adaptive Neural Fuzzy Inference System (ANFIS)
RF model achieves the best prediction results, and feature selection is able to improve test performance of FNN and ANFIS.
Our findings demonstrate that machine learning models could be used to aid fundamental analysts with decision-making regarding stock investment.
arXiv Detail & Related papers (2022-01-26T18:48:51Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Economic Recession Prediction Using Deep Neural Network [26.504845007567972]
We identify the deep learning methodology of Bi-LSTM with Autoencoder as the most accurate model to forecast the beginning and end of economic recessions in the U.S.
We adopt commonly-available macro and market-condition features to compare the ability of different machine learning models to generate good predictions both in-sample and out-of-sample.
arXiv Detail & Related papers (2021-07-21T22:55:14Z) - Uncertainty Prediction for Machine Learning Models of Material
Properties [0.0]
Uncertainty in AI-based predictions of material properties is of immense importance for the success and reliability of AI applications in material science.
We compare 3 different approaches to obtain such individual uncertainty, testing them on 12 ML-physical properties.
arXiv Detail & Related papers (2021-07-16T16:33:55Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve.
This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India.
arXiv Detail & Related papers (2021-06-17T17:15:02Z) - Predicting Recession Probabilities Using Term Spreads: New Evidence from
a Machine Learning Approach [0.0]
We adopt a machine learning method to investigate whether the predictive ability of interest rates can be improved.
The machine learning algorithm identifies the best maturity pair, separating the effects of interest rates from those of the term spread.
Our finding supports the conventional use of the 10-year--three-month Treasury yield spread.
arXiv Detail & Related papers (2021-01-23T01:26:54Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry.
Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced.
arXiv Detail & Related papers (2020-06-09T09:58:19Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.