iADCPS: Time Series Anomaly Detection for Evolving Cyber-physical Systems via Incremental Meta-learning
- URL: http://arxiv.org/abs/2504.04374v1
- Date: Sun, 06 Apr 2025 06:02:31 GMT
- Title: iADCPS: Time Series Anomaly Detection for Evolving Cyber-physical Systems via Incremental Meta-learning
- Authors: Jiyu Tian, Mingchu Li, Liming Chen, Zumin Wang,
- Abstract summary: Anomaly detection for cyber-physical systems (ADCPS) is crucial in identifying faults and potential attacks.<n>We propose an incremental meta-learning-based approach, namely iADCPS, which can continuously update the model.<n>We empirically evaluate the effectiveness of the iADCPS using three publicly available PUMP datasets.
- Score: 4.3965633777497795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection for cyber-physical systems (ADCPS) is crucial in identifying faults and potential attacks by analyzing the time series of sensor measurements and actuator states. However, current methods lack adaptation to data distribution shifts in both temporal and spatial dimensions as cyber-physical systems evolve. To tackle this issue, we propose an incremental meta-learning-based approach, namely iADCPS, which can continuously update the model through limited evolving normal samples to reconcile the distribution gap between evolving and historical time series. Specifically, We first introduce a temporal mixup strategy to align data for data-level generalization which is then combined with the one-class meta-learning approach for model-level generalization. Furthermore, we develop a non-parametric dynamic threshold to adaptively adjust the threshold based on the probability density of the abnormal scores without any anomaly supervision. We empirically evaluate the effectiveness of the iADCPS using three publicly available datasets PUMP, SWaT, and WADI. The experimental results demonstrate that our method achieves 99.0%, 93.1%, and 78.7% F1-Score, respectively, which outperforms the state-of-the-art (SOTA) ADCPS method, especially in the context of the evolving CPSs.
Related papers
- CoCAI: Copula-based Conformal Anomaly Identification for Multivariate Time-Series [0.3495246564946556]
We propose a novel framework that harnesses the power of generative artificial intelligence and copula-based modeling to deliver accurate predictions and enable robust anomaly detection.
arXiv Detail & Related papers (2025-07-23T14:15:31Z) - Transformer-based Multivariate Time Series Anomaly Localization [5.554794295879246]
Space-Time Anomaly Score (STAS) is a new metric inspired by the connection between transformer latent representations and space-time statistical models.<n> Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms.<n>Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
arXiv Detail & Related papers (2025-01-15T07:18:51Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control [5.293458740536858]
We propose a novel change-point detection method based on online Dynamic Mode Decomposition with control (ODMDwC)
Our results demonstrate that this method yields intuitive and improved detection results compared to the Singular-Value-Decomposition-based method.
arXiv Detail & Related papers (2024-07-08T14:18:33Z) - The Significance of Latent Data Divergence in Predicting System Degradation [1.2058600649065616]
Condition-Based Maintenance is pivotal in enabling the early detection of potential failures in engineering systems.
We introduce a novel methodology grounded in the analysis of statistical similarity within latent data from system components.
We infer the similarity between systems by evaluating the divergence of these priors, offering a nuanced understanding of individual system behaviors.
arXiv Detail & Related papers (2024-06-13T11:41:20Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression [1.5039745292757671]
We propose an approach to detect the dataset shifts effectively for regression problems.
Our approach is based on the inductive conformal anomaly detection and utilizes a variational autoencoder for regression model.
We demonstrate our approach by using an advanced emergency braking system implemented in an open-source simulator for self-driving cars.
arXiv Detail & Related papers (2021-04-14T03:46:37Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.