論文の概要: Building LLM Agents by Incorporating Insights from Computer Systems
- arxiv url: http://arxiv.org/abs/2504.04485v1
- Date: Sun, 06 Apr 2025 13:38:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:26.054989
- Title: Building LLM Agents by Incorporating Insights from Computer Systems
- Title(参考訳): コンピュータシステムからの洞察を取り入れたLCMエージェントの構築
- Authors: Yapeng Mi, Zhi Gao, Xiaojian Ma, Qing Li,
- Abstract要約: 計算機システムからの洞察を取り入れたLCMエージェントの構築を提唱する。
フォン・ノイマンアーキテクチャに着想を得て,LLMエージェントシステムのための構造化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.3629124649768
- License:
- Abstract: LLM-driven autonomous agents have emerged as a promising direction in recent years. However, many of these LLM agents are designed empirically or based on intuition, often lacking systematic design principles, which results in diverse agent structures with limited generality and scalability. In this paper, we advocate for building LLM agents by incorporating insights from computer systems. Inspired by the von Neumann architecture, we propose a structured framework for LLM agentic systems, emphasizing modular design and universal principles. Specifically, this paper first provides a comprehensive review of LLM agents from the computer system perspective, then identifies key challenges and future directions inspired by computer system design, and finally explores the learning mechanisms for LLM agents beyond the computer system. The insights gained from this comparative analysis offer a foundation for systematic LLM agent design and advancement.
- Abstract(参考訳): LLM駆動の自律型エージェントは近年,将来性のある方向性として浮上している。
しかしながら、これらのLLMエージェントの多くは経験的または直観に基づいて設計されており、しばしば体系的な設計原則が欠如しており、その結果、汎用性と拡張性に制限のある多様なエージェント構造が生まれる。
本稿では,計算機システムからの洞察を取り入れたLCMエージェントの構築を提唱する。
フォン・ノイマンのアーキテクチャに触発され,モジュール設計と普遍原理を重視した LLM エージェントシステムのための構造化フレームワークを提案する。
具体的には、まず、コンピュータシステムの観点からLLMエージェントの総合的なレビューを行い、コンピュータシステム設計に触発された重要な課題と今後の方向性を特定し、最後に、LLMエージェントの学習メカニズムをコンピュータシステムを超えて探求する。
この比較分析から得られた洞察は、体系的なLLMエージェントの設計と進歩の基礎を提供する。
関連論文リスト
- APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
本稿では,自律型エージェントによるMinecraftの複雑な構造構築を可能にする,LLM(Large Language Model)駆動のフレームワークを提案する。
連鎖分解とマルチモーダル入力を用いることで、このフレームワークは詳細なアーキテクチャレイアウトと青写真を生成する。
本エージェントは, メモリとリフレクションモジュールの両方を組み込んで, 生涯学習, 適応的洗練, エラー訂正を容易にする。
論文 参考訳(メタデータ) (2024-11-26T09:31:28Z) - Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
我々は、構造化出力、プロセスの監督、テストタイム計算など、これまでの分野の進歩について論じる。
モジュール型かつ信頼性の高いLCMシステムの開発に向けた研究の今後の方向性について概説する。
論文 参考訳(メタデータ) (2024-11-25T07:48:31Z) - LLM-based Multi-Agent Systems: Techniques and Business Perspectives [26.74974842247119]
マルチモーダル (multi-modal) な大規模言語モデルの時代において、ほとんどの操作プロセスは LLM エージェントを使って再構成および再生することができる。
発達の自然なトレンドとして、呼び出しツールは自律的なエージェントになりつつあるため、完全なインテリジェントシステムはLLMベースのマルチエージェントシステム(LaMAS)であることが判明した。
従来の単一LLMエージェントシステムと比較して、LaMASは、動的タスク分解と有機的特殊化の利点、システム変更の柔軟性の向上、および、各エンティティに対する収益化の実現可能性を有する。
論文 参考訳(メタデータ) (2024-11-21T11:36:29Z) - Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
LLMを多数の機能モジュールに分解する傾向が高まり、複雑なタスクに取り組むためにモジュールの一部とモジュールの動的アセンブリを推論することができる。
各機能モジュールを表すブロックという用語を造語し、モジュール化された構造をカスタマイズ可能な基礎モデルとして定義する。
検索とルーティング,マージ,更新,成長という,レンガ指向の4つの操作を提示する。
FFN層はニューロンの機能的特殊化と機能的ニューロン分割を伴うモジュラーパターンに従うことが判明した。
論文 参考訳(メタデータ) (2024-09-04T17:01:02Z) - Large Language Model-Based Agents for Software Engineering: A Survey [20.258244647363544]
近年のLarge Language Models(LLM)の進歩は、AIエージェント、すなわちLLMベースのエージェントの新しいパラダイムを形成している。
我々は106の論文を収集し、それらを2つの視点、すなわちSEとエージェントの観点から分類する。
さらに、この重要な領域におけるオープンな課題と今後の方向性についても論じる。
論文 参考訳(メタデータ) (2024-09-04T15:59:41Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
提案フレームワークは,LLMアルゴリズムの進歩を約束する。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
大規模言語モデル(LLM)は、様々な分野やインテリジェントエージェントアプリケーションにおいて大きく進歩している。
この問題に対処するために、LLMが自律的に獲得し、洗練し、モデル自身によって生成された経験から学ぶことができる自己進化的アプローチが急速に成長している。
論文 参考訳(メタデータ) (2024-04-22T17:43:23Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - Risk Taxonomy, Mitigation, and Assessment Benchmarks of Large Language
Model Systems [29.828997665535336]
大規模言語モデル(LLM)は、多様な自然言語処理タスクを解く上で強力な能力を持つ。
しかし、LLMシステムの安全性とセキュリティの問題は、その広範な応用にとって大きな障害となっている。
本稿では,LLMシステムの各モジュールに関連する潜在的なリスクを体系的に分析する包括的分類法を提案する。
論文 参考訳(メタデータ) (2024-01-11T09:29:56Z) - The Tyranny of Possibilities in the Design of Task-Oriented LLM Systems:
A Scoping Survey [1.0489539392650928]
この論文は、最小限のタスク指向LLMシステムを定義し、そのようなシステムの設計空間を探求することから始まる。
結果のパターンを議論し、3つの予想に定式化する。
いずれにせよ、スコーピング調査は将来の研究の指針となる7つの予想を提示している。
論文 参考訳(メタデータ) (2023-12-29T13:35:20Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。