論文の概要: The Point, the Vision and the Text: Does Point Cloud Boost Spatial Reasoning of Large Language Models?
- arxiv url: http://arxiv.org/abs/2504.04540v1
- Date: Sun, 06 Apr 2025 16:38:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:14:37.705297
- Title: The Point, the Vision and the Text: Does Point Cloud Boost Spatial Reasoning of Large Language Models?
- Title(参考訳): ポイント,ビジョン,テキスト:ポイントクラウドは大規模言語モデルの空間的推論を促進するか?
- Authors: Weichen Zhang, Ruiying Peng, Chen Gao, Jianjie Fang, Xin Zeng, Kaiyuan Li, Ziyou Wang, Jinqiang Cui, Xin Wang, Xinlei Chen, Yong Li,
- Abstract要約: 3次元大規模言語モデル (LLM) は点雲における空間情報を利用して3次元空間推論を行う。
いくつかの有望な結果にもかかわらず、3次元空間的推論における点雲の役割は未解明のままである。
textitDoesポイントクラウドは、3D LLMの空間的推論能力を大幅に向上させるのか?
- 参考スコア(独自算出の注目度): 42.3970767778131
- License:
- Abstract: 3D Large Language Models (LLMs) leveraging spatial information in point clouds for 3D spatial reasoning attract great attention. Despite some promising results, the role of point clouds in 3D spatial reasoning remains under-explored. In this work, we comprehensively evaluate and analyze these models to answer the research question: \textit{Does point cloud truly boost the spatial reasoning capacities of 3D LLMs?} We first evaluate the spatial reasoning capacity of LLMs with different input modalities by replacing the point cloud with the visual and text counterparts. We then propose a novel 3D QA (Question-answering) benchmark, ScanReQA, that comprehensively evaluates models' understanding of binary spatial relationships. Our findings reveal several critical insights: 1) LLMs without point input could even achieve competitive performance even in a zero-shot manner; 2) existing 3D LLMs struggle to comprehend the binary spatial relationships; 3) 3D LLMs exhibit limitations in exploiting the structural coordinates in point clouds for fine-grained spatial reasoning. We think these conclusions can help the next step of 3D LLMs and also offer insights for foundation models in other modalities. We release datasets and reproducible codes in the anonymous project page: https://3d-llm.xyz.
- Abstract(参考訳): 3次元大規模言語モデル (LLM) は点雲における空間情報を利用して3次元空間推論を行う。
いくつかの有望な結果にもかかわらず、3次元空間的推論における点雲の役割は未解明のままである。
本研究では,これらのモデルを総合的に評価・解析し,研究課題に答える。 \textit{Does point cloud は3次元LLMの空間的推論能力を大幅に向上させるのか?
点雲を視覚的・テキスト的に置き換えることで,LLMの空間的推論能力を異なる入力モードで評価する。
次に,2次元空間関係に対するモデルの理解を包括的に評価する新しい3次元QA(Question-Awering)ベンチマークScanReQAを提案する。
私たちの発見は、いくつかの重要な洞察を浮き彫りにしている。
1) ポイント入力のないLLMは、ゼロショット方式でも競争性能を達成できる。
2) 既存の3D LLMは,2次元空間関係の理解に苦慮している。
3) 3次元LLMは細粒な空間的推論のために点雲における構造座標を利用する際の限界を示す。
これらの結論は、3D LLMの次のステップに役立ち、他のモダリティの基盤モデルに対する洞察を提供することができると考えています。
匿名プロジェクトのページには、データセットと再現可能なコードがリリースされています。
関連論文リスト
- 3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark [17.94511890272007]
3次元空間推論は、3次元空間内の物体の位置、向き、空間的関係を分析し、解釈する能力である。
大規模マルチモーダルモデル(LMM)は、幅広い画像および映像理解タスクにおいて顕著な進歩を遂げている。
2,772対の視覚的質問応答対を持つ3DSRBenchを用いた3次元空間推論ベンチマークを作成した。
論文 参考訳(メタデータ) (2024-12-10T18:55:23Z) - SPARTUN3D: Situated Spatial Understanding of 3D World in Large Language Models [45.28780381341979]
Spartun3Dという,様々な位置空間推論タスクを組み込んだスケーラブルな位置位置3Dデータセットを導入する。
また,Spartun3D-LLMを提案する。これは既存の3次元LLM上に構築されているが,新しい位置空間アライメントモジュールと統合されている。
論文 参考訳(メタデータ) (2024-10-04T19:22:20Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
マルチモーダルな大言語モデル(MLLM)は、一般的な能力では優れているが、3Dタスクでは性能が劣る。
本稿では,3次元局所空間物体認識の弱さ,テキストに基づく幾何学的数値出力の低さ,カメラ焦点変動の処理能力の低下に対する解決策を提案する。
我々は,事前学習したMLLMに対してパラメータ効率の良い微調整を採用し,強力な3次元知覚MLLMであるLLMI3Dを開発した。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
本調査では,大規模言語モデルによる3Dデータの処理,理解,生成を可能にする方法論の概要について概説する。
我々の研究は、点雲からニューラル放射場(NeRF)まで、様々な3次元データ表現にまたがっている。
3Dシーン理解、キャプション、質問応答、対話などのタスクにおいて、LLMとの統合を検討する。
論文 参考訳(メタデータ) (2024-05-16T16:59:58Z) - Unified Scene Representation and Reconstruction for 3D Large Language Models [40.693839066536505]
既存のアプローチは、基底真理(GT)幾何または補助モデルによって再構成された3次元シーンから点雲を抽出する。
凍結した2次元基礎モデルを用いて、Uni3DR2の3次元幾何学的および意味的認識表現特徴を抽出する。
我々の学習した3D表現は、再構築プロセスに貢献するだけでなく、LLMにとって貴重な知識も提供します。
論文 参考訳(メタデータ) (2024-04-19T17:58:04Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
空間的関係についての理解と推論は、視覚質問応答(VQA)とロボット工学の基本的な能力である。
我々は,1000万枚の実画像に対して,最大20億個のVQAサンプルをスケール可能な3次元空間VQAデータ自動生成フレームワークを開発した。
このようなデータに基づいてVLMを訓練することにより、定性的空間的VQAと定量的空間的VQAの両方において、その能力を大幅に向上する。
論文 参考訳(メタデータ) (2024-01-22T18:01:01Z) - PointLLM: Empowering Large Language Models to Understand Point Clouds [63.39876878899682]
PointLLMは人間の指示で色のついたオブジェクトポイントクラウドを理解する。
文脈的に適切な応答を生成し、点雲と常識の把握を図示する。
論文 参考訳(メタデータ) (2023-08-31T17:59:46Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
現実シナリオにおける3Dポイントクラウド表現の伝達を学習するために,Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$)を提案する。
具体的には、2Dおよび3Dシナリオで自然に存在する対応を利用して、それらの複雑なシナリオから、適切に整列されたインスタンスベースのテキストイメージポイントプロキシを構築します。
論文 参考訳(メタデータ) (2023-03-22T09:32:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。