論文の概要: SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities
- arxiv url: http://arxiv.org/abs/2401.12168v1
- Date: Mon, 22 Jan 2024 18:01:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 13:00:54.092792
- Title: SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities
- Title(参考訳): 空間VLM:空間共振機能を有する視覚言語モデル
- Authors: Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete
Florence, Dorsa Sadigh, Leonidas Guibas, Fei Xia
- Abstract要約: 空間的関係についての理解と推論は、視覚質問応答(VQA)とロボット工学の基本的な能力である。
我々は,1000万枚の実画像に対して,最大20億個のVQAサンプルをスケール可能な3次元空間VQAデータ自動生成フレームワークを開発した。
このようなデータに基づいてVLMを訓練することにより、定性的空間的VQAと定量的空間的VQAの両方において、その能力を大幅に向上する。
- 参考スコア(独自算出の注目度): 59.39858959066982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and reasoning about spatial relationships is a fundamental
capability for Visual Question Answering (VQA) and robotics. While Vision
Language Models (VLM) have demonstrated remarkable performance in certain VQA
benchmarks, they still lack capabilities in 3D spatial reasoning, such as
recognizing quantitative relationships of physical objects like distances or
size differences. We hypothesize that VLMs' limited spatial reasoning
capability is due to the lack of 3D spatial knowledge in training data and aim
to solve this problem by training VLMs with Internet-scale spatial reasoning
data. To this end, we present a system to facilitate this approach. We first
develop an automatic 3D spatial VQA data generation framework that scales up to
2 billion VQA examples on 10 million real-world images. We then investigate
various factors in the training recipe, including data quality, training
pipeline, and VLM architecture. Our work features the first internet-scale 3D
spatial reasoning dataset in metric space. By training a VLM on such data, we
significantly enhance its ability on both qualitative and quantitative spatial
VQA. Finally, we demonstrate that this VLM unlocks novel downstream
applications in chain-of-thought spatial reasoning and robotics due to its
quantitative estimation capability. Project website:
https://spatial-vlm.github.io/
- Abstract(参考訳): 空間関係の理解と推論は視覚質問応答(VQA)とロボット工学の基本的な能力である。
視覚言語モデル(VLM)は、特定のVQAベンチマークで顕著な性能を示したが、距離や大きさの違いのような物理的オブジェクトの量的関係を認識するなど、3次元空間推論の能力に欠けていた。
vlmsの限定的な空間推論能力は、トレーニングデータにおける3次元空間知識の欠如によるものであると仮定し、vlmsをインターネット規模の空間推論データで訓練することでこの問題を解決しようとする。
そこで我々は,このアプローチを促進するシステムを提案する。
まず,1000万枚の実画像に対して,最大20億個のVQAサンプルをスケール可能な3次元空間VQAデータ自動生成フレームワークを開発した。
次に,データ品質,トレーニングパイプライン,VLMアーキテクチャなど,トレーニングレシピのさまざまな要因について検討する。
我々の研究は、計量空間における最初のインターネット規模の空間推論データセットである。
このようなデータに基づいてVLMを訓練することにより、定性的空間的VQAと定量的空間的VQAの両方において、その能力を大幅に向上する。
最後に、このVLMは、その定量的推定能力により、チェーンオブスペース推論およびロボット工学における新しい下流応用を解き放つことを実証する。
プロジェクトウェブサイト: https://spatial-vlm.github.io/
関連論文リスト
- LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image [72.14973729674995]
現在の3D認識手法、特に小さなモデルでは、論理的推論、質問応答、オープンシナリオカテゴリの処理に苦労している。
空間的特徴抽出のための空間的局所特徴抽出法,精密な幾何回帰のための3次元問合せ情報復号法,カメラ焦点長変動に対する幾何学投影に基づく3次元推論を提案する。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - Adapting a Foundation Model for Space-based Tasks [16.81793096235458]
宇宙ロボティクスの将来において、宇宙ベースのアプリケーションに適応した基礎モデルの使用を動機付ける3つのコア課題が見られます。
本研究では,1)既存の視覚言語モデルは空間ベースアプリケーションでは不十分な視覚推論モデルであり,2)地球外データ上での視覚言語モデルの微調整は応答の質を著しく向上させることを示した。
論文 参考訳(メタデータ) (2024-08-12T05:07:24Z) - SpatialBot: Precise Spatial Understanding with Vision Language Models [12.67089704185187]
視覚言語モデル (VLM) は2次元画像理解において優れた性能を発揮している。
彼らはまだ、Embodied AIの基盤である空間的理解に苦戦している。
本稿では,RGB画像と深度画像の両方をフィードすることで,空間的理解を向上させるためのSpatialBotを提案する。
論文 参考訳(メタデータ) (2024-06-19T15:41:30Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
画像中の物体間の空間的関係を理解する能力は、視覚的推論の重要な構成要素である。
我々は、以前リリースされたWhat'sUpデータセットを拡張し、空間関係理解のための新しい包括的評価を提案する。
論文 参考訳(メタデータ) (2024-06-19T06:15:26Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
VLMの空間知覚と推論能力を高めるために空間領域GPT(SpatialRGPT)を導入する。
推測中、ユーザが指定した領域の提案が提供されると、SpatialRGPTは相対的な方向と距離を正確に知覚できる。
本研究では,空間的推論タスクにおける局所的プロンプトと非局所的プロンプトの双方において,空間的RGPTにより性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-06-03T17:59:06Z) - Language-Image Models with 3D Understanding [59.499585515469974]
LV3Dと呼ばれる2Dおよび3Dのための大規模事前学習データセットを開発した。
次に,新しいMLLMであるCube-LLMを導入し,LV3Dで事前学習する。
純粋なデータスケーリングは、3D特有のアーキテクチャ設計やトレーニング目的を使わずに、強力な3D知覚能力を実現することを示す。
論文 参考訳(メタデータ) (2024-05-06T17:57:27Z) - OmniDrive: A Holistic LLM-Agent Framework for Autonomous Driving with 3D Perception, Reasoning and Planning [68.45848423501927]
本稿では,エージェントモデルと3次元駆動タスクの整合性を高めるための総合的枠組みを提案する。
我々のフレームワークは、スパースクエリを使って視覚表現を3Dに上げ、圧縮する新しい3DMLLMアーキテクチャから始まります。
OmniDrive-nuScenesは、モデルの真の3次元状況認識に挑戦する新しい視覚的質問応答データセットである。
論文 参考訳(メタデータ) (2024-05-02T17:59:24Z) - SpatialPIN: Enhancing Spatial Reasoning Capabilities of Vision-Language Models through Prompting and Interacting 3D Priors [42.85605789984155]
空間的視覚的質問応答(VQA)において、最先端の空間的推論強化VLMを訓練する
本研究では,VLMの空間的推論能力を高めるためのフレームワークであるSpatialPINを提案する。
我々の空間推論型VLMは、空間的VQAの様々な形態でうまく機能し、ピックやスタック、軌道計画といった下流ロボット作業に役立てることができる。
論文 参考訳(メタデータ) (2024-03-18T17:38:29Z) - VIPHY: Probing "Visible" Physical Commonsense Knowledge [22.00069189468524]
視覚言語モデル(VLM)は視覚的推論タスクにおいて顕著な性能を示した。
視覚的」身体的知識を習得する能力を評価する。
以上の結果から,モデルと人的パフォーマンスの間には深刻なギャップがあることが示唆された。
論文 参考訳(メタデータ) (2022-09-15T02:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。