Here Comes the Explanation: A Shapley Perspective on Multi-contrast Medical Image Segmentation
- URL: http://arxiv.org/abs/2504.04645v1
- Date: Sun, 06 Apr 2025 23:52:07 GMT
- Title: Here Comes the Explanation: A Shapley Perspective on Multi-contrast Medical Image Segmentation
- Authors: Tianyi Ren, Juampablo Heras Rivera, Hitender Oswal, Yutong Pan, Agamdeep Chopra, Jacob Ruzevick, Mehmet Kurt,
- Abstract summary: We propose using contrast-level Shapley values to explain state-of-the-art models trained on standard metrics used in brain tumor segmentation.<n>Our results demonstrate that Shapley analysis provides valuable insights into different models' behavior used for tumor segmentation.
- Score: 0.1675245825272646
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning has been successfully applied to medical image segmentation, enabling accurate identification of regions of interest such as organs and lesions. This approach works effectively across diverse datasets, including those with single-image contrast, multi-contrast, and multimodal imaging data. To improve human understanding of these black-box models, there is a growing need for Explainable AI (XAI) techniques for model transparency and accountability. Previous research has primarily focused on post hoc pixel-level explanations, using methods gradient-based and perturbation-based apporaches. These methods rely on gradients or perturbations to explain model predictions. However, these pixel-level explanations often struggle with the complexity inherent in multi-contrast magnetic resonance imaging (MRI) segmentation tasks, and the sparsely distributed explanations have limited clinical relevance. In this study, we propose using contrast-level Shapley values to explain state-of-the-art models trained on standard metrics used in brain tumor segmentation. Our results demonstrate that Shapley analysis provides valuable insights into different models' behavior used for tumor segmentation. We demonstrated a bias for U-Net towards over-weighing T1-contrast and FLAIR, while Swin-UNETR provided a cross-contrast understanding with balanced Shapley distribution.
Related papers
- SeLIP: Similarity Enhanced Contrastive Language Image Pretraining for Multi-modal Head MRI [6.714491893348051]
We propose to develop a foundation model for multi-model head MRI by using contrastive learning on the images and the corresponding radiology findings.<n>Our proposed similarity enhanced contrastive language image pretraining (SeLIP) is able to effectively extract more useful features.
arXiv Detail & Related papers (2025-03-25T16:09:45Z) - Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation [5.662694302758443]
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research.
It frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients.
One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition.
arXiv Detail & Related papers (2023-09-06T19:01:58Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.