HypRL: Reinforcement Learning of Control Policies for Hyperproperties
- URL: http://arxiv.org/abs/2504.04675v4
- Date: Tue, 05 Aug 2025 01:20:00 GMT
- Title: HypRL: Reinforcement Learning of Control Policies for Hyperproperties
- Authors: Tzu-Han Hsu, Arshia Rafieioskouei, Borzoo Bonakdarpour,
- Abstract summary: We propose HYPRL, a specification-guided reinforcement learning framework.<n>We apply Skolemization to manage quantifier alternations and define quantitative functions to shape rewards.<n>A suitable RL algorithm is then used to learn policies that collectively maximize the expected reward.
- Score: 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reward shaping in multi-agent reinforcement learning (MARL) for complex tasks remains a significant challenge. Existing approaches often fail to find optimal solutions or cannot efficiently handle such tasks. We propose HYPRL, a specification-guided reinforcement learning framework that learns control policies w.r.t. hyperproperties expressed in HyperLTL. Hyperproperties constitute a powerful formalism for specifying objectives and constraints over sets of execution traces across agents. To learn policies that maximize the satisfaction of a HyperLTL formula $\phi$, we apply Skolemization to manage quantifier alternations and define quantitative robustness functions to shape rewards over execution traces of a Markov decision process with unknown transitions. A suitable RL algorithm is then used to learn policies that collectively maximize the expected reward and, consequently, increase the probability of satisfying $\phi$. We evaluate HYPRL on a diverse set of benchmarks, including safety-aware planning, Deep Sea Treasure, and the Post Correspondence Problem. We also compare with specification-driven baselines to demonstrate the effectiveness and efficiency of HYPRL.
Related papers
- Recursive Reward Aggregation [51.552609126905885]
We propose an alternative approach for flexible behavior alignment that eliminates the need to modify the reward function.<n>By introducing an algebraic perspective on Markov decision processes (MDPs), we show that the Bellman equations naturally emerge from the generation and aggregation of rewards.<n>Our approach applies to both deterministic and deterministic settings and seamlessly integrates with value-based and actor-critic algorithms.
arXiv Detail & Related papers (2025-07-11T12:37:20Z) - Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - Why Ask One When You Can Ask $k$? Two-Stage Learning-to-Defer to the Top-$k$ Experts [3.6787328174619254]
Learning-to-Defer (L2D) enables decision-making systems to improve reliability by selectively deferring uncertain predictions to more competent agents.
We propose Top-$k$ Learning-to-Defer, a generalization of the classical two-stage L2D framework that allocates each query to the $k$ most confident agents instead of a single one.
To further enhance flexibility and cost-efficiency, we introduce Top-$k(x)$ Learning-to-Defer, an adaptive extension that learns the optimal number of agents to consult for each query.
arXiv Detail & Related papers (2025-04-17T14:50:40Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - A View of the Certainty-Equivalence Method for PAC RL as an Application of the Trajectory Tree Method [5.238591085233903]
This paper presents a theoretical investigation that stems from the surprising finding that CEM may indeed be viewed as an application of TTM.<n>We obtain (3) improvements in the sample-complexity upper bounds for CEM both for non-stationary and stationary MDPs.<n>We also show (4) a lower bound on the sample complexity for finite-horizon MDPs, which establishes the minimax-optimality of our upper bound for non-stationary MDPs.
arXiv Detail & Related papers (2025-01-05T20:37:34Z) - Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation [12.243491328213217]
Reinforcement Learning (RL) based methods have been increasingly explored for robot learning.<n>We propose a Temporal-Logic-guided Hybrid policy framework (HyTL) which leverages three-level decision layers to improve the agent's performance.<n>We evaluate HyTL on four challenging manipulation tasks, which demonstrate its effectiveness and interpretability.
arXiv Detail & Related papers (2024-12-29T03:34:53Z) - Mean-Field Sampling for Cooperative Multi-Agent Reinforcement Learning [4.899818550820576]
We propose a new algorithm for multi-agent reinforcement learning.<n>We show that this learned policy converges to the optimal policy on the order of $tildeO (1/sqrtk)$ as the number of subsampled agents increases.
arXiv Detail & Related papers (2024-12-01T03:45:17Z) - Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
In complex environments with discrete action spaces, effective decision-making is critical in reinforcement learning (RL)
We present value-based RL approaches which, as opposed to optimizing over the entire set of $n$ actions, only consider a variable set of actions, possibly as small as $mathcalO(log(n)$)$.
The presented value-based RL methods include, among others, Q-learning, StochDQN, StochDDQN, all of which integrate this approach for both value-function updates and action selection.
arXiv Detail & Related papers (2024-05-16T17:58:44Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - When is Agnostic Reinforcement Learning Statistically Tractable? [76.1408672715773]
A new complexity measure, called the emphspanning capacity, depends solely on the set $Pi$ and is independent of the MDP dynamics.
We show there exists a policy class $Pi$ with a bounded spanning capacity that requires a superpolynomial number of samples to learn.
This reveals a surprising separation for learnability between generative access and online access models.
arXiv Detail & Related papers (2023-10-09T19:40:54Z) - Stepsize Learning for Policy Gradient Methods in Contextual Markov
Decision Processes [35.889129338603446]
Policy-based algorithms are among the most widely adopted techniques in model-free RL.
They tend to struggle when asked to accomplish a series of heterogeneous tasks.
We introduce a new formulation, known as meta-MDP, that can be used to solve any hyper parameter selection problem in RL.
arXiv Detail & Related papers (2023-06-13T12:58:12Z) - Achieving Fairness in Multi-Agent Markov Decision Processes Using
Reinforcement Learning [30.605881670761853]
We propose a Reinforcement Learning approach to achieve fairness in finite-horizon episodic MDPs.
We show that such an approach achieves sub-linear regret in terms of the number of episodes.
arXiv Detail & Related papers (2023-06-01T03:43:53Z) - Hypernetworks for Zero-shot Transfer in Reinforcement Learning [21.994654567458017]
Hypernetworks are trained to generate behaviors across a range of unseen task conditions.
This work relates to meta RL, contextual RL, and transfer learning.
Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
arXiv Detail & Related papers (2022-11-28T15:48:35Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - MDPGT: Momentum-based Decentralized Policy Gradient Tracking [29.22173174168708]
We propose a momentum-based decentralized policy gradient tracking (MDPGT) for multi-agent reinforcement learning.
MDPGT achieves the best available sample complexity of $mathcalO(N-1epsilon-3)$ for converging to an $epsilon-stationary point of the global average of $N$ local performance functions.
This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning.
arXiv Detail & Related papers (2021-12-06T06:55:51Z) - Reinforcement Learning in Reward-Mixing MDPs [74.41782017817808]
episodic reinforcement learning in a reward-mixing Markov decision process (MDP)
cdot S2 A2)$ episodes, where $H$ is time-horizon and $S, A$ are the number of states and actions respectively.
epsilon$-optimal policy after exploring $tildeO(poly(H,epsilon-1) cdot S2 A2)$ episodes, where $H$ is time-horizon and $S, A$ are the number of states and actions respectively.
arXiv Detail & Related papers (2021-10-07T18:55:49Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Reward is enough for convex MDPs [30.478950691312715]
We study convex MDPs in which goals are expressed as convex functions of the stationary distribution.
We propose a meta-algorithm for solving this problem and show that it unifies many existing algorithms in the literature.
arXiv Detail & Related papers (2021-06-01T17:46:25Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - RL for Latent MDPs: Regret Guarantees and a Lower Bound [74.41782017817808]
We consider the regret problem for reinforcement learning in latent Markov Decision Processes (LMDP)
In an LMDP, an MDP is randomly drawn from a set of $M$ possible MDPs at the beginning of the interaction, but the identity of the chosen MDP is not revealed to the agent.
We show that the key link is a notion of separation between the MDP system dynamics.
arXiv Detail & Related papers (2021-02-09T16:49:58Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.