KunPeng: A Global Ocean Environmental Model
- URL: http://arxiv.org/abs/2504.04766v1
- Date: Mon, 07 Apr 2025 06:41:05 GMT
- Title: KunPeng: A Global Ocean Environmental Model
- Authors: Yi Zhao, Jiaqi Li, Haitao Xia, Tianjiao Zhang, Zerong Zeng, Tianyu Ren, Yucheng Zhang, Chao Zhu, Shengtong Xu, Hongchun Yuan,
- Abstract summary: This study migrates meteorological large-model techniques to the ocean domain, constructing the KunPeng global ocean environmental prediction model.<n>Aimed at the characteristics of marine space, we propose a terrain-adaptive mask constraint mechanism to mitigate effectively training divergence caused by abrupt gradients at land-sea boundaries.
- Score: 5.565814778529731
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by the similarity of the atmosphere-ocean physical coupling mechanism, this study innovatively migrates meteorological large-model techniques to the ocean domain, constructing the KunPeng global ocean environmental prediction model. Aimed at the discontinuous characteristics of marine space, we propose a terrain-adaptive mask constraint mechanism to mitigate effectively training divergence caused by abrupt gradients at land-sea boundaries. To fully integrate far-, medium-, and close-range marine features, a longitude-cyclic deformable convolution network (LC-DCN) is employed to enhance the dynamic receptive field, achieving refined modeling of multi-scale oceanic characteristics. A Deformable Convolution-enhanced Multi-Step Prediction module (DC-MTP) is employed to strengthen temporal dependency feature extraction capabilities. Experimental results demonstrate that this model achieves an average ACC of 0.80 in 15-day global predictions at 0.25$^\circ$ resolution, outperforming comparative models by 0.01-0.08. The average mean squared error (MSE) is 0.41 (representing a 5%-31% reduction) and the average mean absolute error (MAE) is 0.44 (0.6%-21% reduction) compared to other models. Significant improvements are particularly observed in sea surface parameter prediction, deep-sea region characterization, and current velocity field forecasting. Through a horizontal comparison of the applicability of operators at different scales in the marine domain, this study reveals that local operators significantly outperform global operators under slow-varying oceanic processes, demonstrating the effectiveness of dynamic feature pyramid representations in predicting marine physical parameters.
Related papers
- Improving Significant Wave Height Prediction Using Chronos Models [3.5791500950915567]
This study introduces Chronos, the first implementation of a large language model (LLM)-powered temporal architecture (Chronos) optimized for wave forecasting.
advanced temporal pattern recognition applied to historical wave data from three strategically chosen marine zones in the Northwest Pacific basin.
arXiv Detail & Related papers (2025-04-23T15:56:28Z) - How to systematically develop an effective AI-based bias correction model? [15.73933701556121]
This study introduces ReSA-ConvLSTM, an artificial intelligence (AI) framework for systematic bias correction in numerical weather prediction (NWP)
We propose three innovations by integrating dynamic climatological normalization, ConvLSTM with temporal causality constraints, and residual self-attention mechanisms.
Using 41 years (1981-2021) of global atmospheric data, the framework reduces systematic biases in 2-m air temperature (T2m), 10-m winds (UV10), and sea-level pressure (SLP)
The lightweight architecture (10.6M parameters) enables efficient generalization to multiple variables and downstream applications, reducing retraining time by
arXiv Detail & Related papers (2025-04-21T03:02:42Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
We evaluate the efficiency of three surrogate models in speeding up experimental research by simulating land surface processes.
Our findings indicate that while all models on average demonstrate high accuracy over the forecast period, the LSTM network excels in continental long-range predictions when carefully tuned.
arXiv Detail & Related papers (2024-07-23T13:26:05Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities.
We propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023.
arXiv Detail & Related papers (2024-05-12T09:32:40Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
We propose an adaptive surrogate modeling approach named LANE-SI.
It uses ensemble of relatively simple deep learning models with different loss functions for forecasting of sea ice concentration in the specified water area.
We achieve a 20% improvement against the state-of-the-art physics-based forecast system SEAS5 for the Kara Sea.
arXiv Detail & Related papers (2023-12-07T14:48:30Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
This study introduces OceanNet, a principled neural operator-based digital twin for ocean circulation.
OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream)
arXiv Detail & Related papers (2023-10-01T23:06:17Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Dynamic Basis Function Interpolation for Adaptive In Situ Data Integration in Ocean Modeling [1.4549461207028445]
We propose a new method for combining in situ buoy measurements with Earth system models (ESMs) to improve the accuracy of temperature predictions in the ocean.
The technique utilizes the dynamics textitand modes identified in ESMs alongside buoy measurements to improve accuracy while preserving features such as seasonality.
arXiv Detail & Related papers (2023-01-11T21:21:02Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.