Dynamic Basis Function Interpolation for Adaptive In Situ Data Integration in Ocean Modeling
- URL: http://arxiv.org/abs/2301.05551v3
- Date: Thu, 20 Jun 2024 15:27:15 GMT
- Title: Dynamic Basis Function Interpolation for Adaptive In Situ Data Integration in Ocean Modeling
- Authors: Derek DeSantis, Ayan Biswas, Earl Lawrence, Phillip Wolfram,
- Abstract summary: We propose a new method for combining in situ buoy measurements with Earth system models (ESMs) to improve the accuracy of temperature predictions in the ocean.
The technique utilizes the dynamics textitand modes identified in ESMs alongside buoy measurements to improve accuracy while preserving features such as seasonality.
- Score: 1.4549461207028445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new method for combining in situ buoy measurements with Earth system models (ESMs) to improve the accuracy of temperature predictions in the ocean. The technique utilizes the dynamics \textit{and} modes identified in ESMs alongside buoy measurements to improve accuracy while preserving features such as seasonality. We use this technique, which we call Dynamic Basis Function Interpolation, to correct errors in localized temperature predictions made by the Model for Prediction Across Scales Ocean component (MPAS-O) with the Global Drifter Program's in situ ocean buoy dataset.
Related papers
- KunPeng: A Global Ocean Environmental Model [5.565814778529731]
This study migrates meteorological large-model techniques to the ocean domain, constructing the KunPeng global ocean environmental prediction model.
Aimed at the characteristics of marine space, we propose a terrain-adaptive mask constraint mechanism to mitigate effectively training divergence caused by abrupt gradients at land-sea boundaries.
arXiv Detail & Related papers (2025-04-07T06:41:05Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Optimized Dynamic Mode Decomposition for Reconstruction and Forecasting of Atmospheric Chemistry Data [3.1484174280822845]
We introduce the optimized dynamic mode decomposition for constructing an adaptive and efficient reduced order model and forecasting tool.
We show that the DMD algorithm successfully extracts known features of atmospheric chemistry, such as summertime surface pollution and biomass burning activities.
arXiv Detail & Related papers (2024-04-13T15:44:12Z) - Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net [0.0]
This research aims to improve the accuracy of deep-learning models for predicting underwater radiated noise in far-field scenarios.
We propose a novel range-conditional convolutional neural network that incorporates ocean bathymetry data into the input.
Our proposed architecture effectively captures transmission loss over a range-dependent, varying bathymetry profile.
arXiv Detail & Related papers (2024-04-11T19:13:38Z) - Streamlining Ocean Dynamics Modeling with Fourier Neural Operators: A Multiobjective Hyperparameter and Architecture Optimization Approach [5.232806761554172]
We use the advanced search algorithms for multiobjective optimization in DeepHyper to streamline the development of neural networks tailored for ocean modeling.
We demonstrate an approach to enhance the use of FNOs in ocean dynamics forecasting, offering a scalable solution with improved precision.
arXiv Detail & Related papers (2024-04-07T14:29:23Z) - Subsurface Characterization using Ensemble-based Approaches with Deep
Generative Models [2.184775414778289]
Inverse modeling is limited for ill-posed, high-dimensional applications due to computational costs and poor prediction accuracy with sparse datasets.
We combine Wasserstein Geneversarative Adrial Network with Gradient Penalty (WGAN-GP) and Ensemble Smoother with Multiple Data Assimilation (ES-MDA)
WGAN-GP is trained to generate high-dimensional K fields from a low-dimensional latent space and ES-MDA updates the latent variables by assimilating available measurements.
arXiv Detail & Related papers (2023-10-02T01:27:10Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
The paper discusses the improvement of the accuracy of an inertial navigation system created on the basis of MEMS sensors using machine learning (ML) methods.
The proposed algorithm based on MO has demonstrated its ability to correctly classify in the presence of noise typical for MEMS sensors.
arXiv Detail & Related papers (2022-12-07T10:01:11Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Physics-Guided Generative Adversarial Networks for Sea Subsurface
Temperature Prediction [24.55780949103687]
Sea subsurface temperature is affected by global warming in climate change.
Existing research is commonly based on either physics-based numerical models or data based models.
We propose a novel framework based on generative adversarial network (GAN) combined with numerical model to predict sea subsurface temperature.
arXiv Detail & Related papers (2021-11-04T23:46:51Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.