論文の概要: Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making
- arxiv url: http://arxiv.org/abs/2504.04789v1
- Date: Mon, 07 Apr 2025 07:32:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:53.431963
- Title: Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making
- Title(参考訳): マルチモーダル農業エージェントアーキテクチャ(MA3):インテリジェント農業意思決定のための新しいパラダイム
- Authors: Zhuoning Xu, Jian Xu, Mingqing Zhang, Peijie Wang, Chao Deng, Cheng-Lin Liu,
- Abstract要約: 現代の農業は生産効率を最適化し、持続可能な開発を達成するという2つの課題に直面している。
これらの課題に対処するために,本研究では,革新的なtextbfMultimodal textbfAgricultural textbfAgent textbfArchitecture (textbfMA3)を提案する。
本研究では、分類、検出、視覚質問応答(VQA)、ツール選択、エージェント評価の5つの主要なタスクを含むマルチモーダル農業エージェントデータセットを構築した。
- 参考スコア(独自算出の注目度): 32.62816270192696
- License:
- Abstract: As a strategic pillar industry for human survival and development, modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development. Against the backdrop of intensified climate change leading to frequent extreme weather events, the uncertainty risks in agricultural production systems are increasing exponentially. To address these challenges, this study proposes an innovative \textbf{M}ultimodal \textbf{A}gricultural \textbf{A}gent \textbf{A}rchitecture (\textbf{MA3}), which leverages cross-modal information fusion and task collaboration mechanisms to achieve intelligent agricultural decision-making. This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation. We propose a unified backbone for sugarcane disease classification and detection tools, as well as a sugarcane disease expert model. By integrating an innovative tool selection module, we develop a multimodal agricultural agent capable of effectively performing tasks in classification, detection, and VQA. Furthermore, we introduce a multi-dimensional quantitative evaluation framework and conduct a comprehensive assessment of the entire architecture over our evaluation dataset, thereby verifying the practicality and robustness of MA3 in agricultural scenarios. This study provides new insights and methodologies for the development of agricultural agents, holding significant theoretical and practical implications. Our source code and dataset will be made publicly available upon acceptance.
- Abstract(参考訳): 現代農業は、人間の生存と発展のための戦略的柱産業として、生産効率の最適化と持続可能な開発の実現という2つの課題に直面している。
気候変動の激化を背景に、極端な気象現象が頻発する中、農業生産システムの不確実性リスクは指数関数的に増大している。
これらの課題に対処するために, 知的農業意思決定を実現するために, クロスモーダル情報融合とタスク協調機構を活用する, 革新的 \textbf{M}ultimodal \textbf{A}gricultural \textbf{A}gent \textbf{A}rchitecture (\textbf{A}rchitecture (\textbf{MA3}) を提案する。
本研究では、分類、検出、視覚質問応答(VQA)、ツール選択、エージェント評価の5つの主要なタスクを含むマルチモーダル農業エージェントデータセットを構築した。
本稿では,サトウキビ病の分類・検出ツールと,サトウキビ病専門家モデルのための統一バックボーンを提案する。
革新的なツール選択モジュールを統合することで,分類,検出,VQAのタスクを効果的に行うことができるマルチモーダル農業エージェントを開発した。
さらに,多次元定量的評価フレームワークを導入し,評価データセット上でアーキテクチャ全体の包括的評価を行い,農業シナリオにおけるMA3の実用性と堅牢性を検証する。
本研究は, 農薬開発における新たな知見と方法論を提供し, 重要な理論的, 実践的意味を持っている。
ソースコードとデータセットは、受理時に公開されます。
関連論文リスト
- Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
農業分野における最初のマルチモーダル・インストラクション・フォロー・データセットを構築した。
このデータセットは、約40万のデータエントリを持つ221種類以上の害虫と病気をカバーしている。
本稿では,農業用マルチモーダル対話システムであるAgri-LLaVAを開発するための知識注入型学習手法を提案する。
論文 参考訳(メタデータ) (2024-12-03T04:34:23Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
ファンデーションモデル開発は、急速に成長するコントリビュータ、科学者、アプリケーションを引き付けている。
責任ある開発プラクティスを形成するために、我々はFoundation Model Development Cheatsheetを紹介します。
論文 参考訳(メタデータ) (2024-06-24T15:55:49Z) - Information Fusion in Smart Agriculture: Machine Learning Applications and Future Research Directions [6.060623947643556]
レビューでは、機械学習(ML)技術とマルチソースデータ融合が組み合わさって、予測精度と意思決定を改善して精度の高い農業を強化する方法について論じている。
このレビューはAI研究と農業応用のギャップを埋め、研究者、産業専門家、政策立案者に情報融合とMLを利用して精密農業を推進するためのロードマップを提供する。
論文 参考訳(メタデータ) (2024-05-23T17:53:31Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Explainable AI in Grassland Monitoring: Enhancing Model Performance and
Domain Adaptability [0.6131022957085438]
草原は高い生物多様性と複数の生態系サービスを提供する能力で知られている。
指標植物の自動識別の課題は、大規模な草地モニタリングの鍵となる障害である。
本稿では,移動学習と草地モニタリングへのXAIアプローチを中心に,後者の2つの課題を考察する。
論文 参考訳(メタデータ) (2023-12-13T10:17:48Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
デジタル農業は、食料、食料、繊維、燃料の需要の増加に対応するために急速に発展している。
デジタル農業における機械学習の研究は、主にモデル中心のアプローチに焦点を当てている。
デジタル農業の可能性を完全に実現するためには、この分野におけるデータの役割を包括的に理解することが不可欠である。
論文 参考訳(メタデータ) (2023-12-06T11:38:26Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
マルチモーダル推論は、人間のような知性を示す人工知能システムの追求において重要な要素である。
提案するマルチモーダル推論(COCO-MMR)データセットは,オープンエンド質問の集合を包含する新しいデータセットである。
画像とテキストエンコーダを強化するために,マルチホップ・クロスモーダル・アテンションや文レベルのコントラスト学習などの革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:58:25Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - Data Warehouse and Decision Support on Integrated Crop Big Data [0.0]
我々は大陸レベルの農業データウェアハウス(ADW)を設計・実装した。
ADWは,(1)フレキシブルスキーマ,(2)農業用マルチデータセットからのデータ統合,(3)データサイエンスとビジネス用インテリジェントサポート,(4)ハイパフォーマンス,(5)高ストレージ,(6)セキュリティ,(7)ガバナンスと監視,(8)一貫性,可用性,パーティション耐性,(9)クラウド互換性によって特徴付けられる。
論文 参考訳(メタデータ) (2020-03-10T00:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。