Explainability of AI Uncertainty: Application to Multiple Sclerosis Lesion Segmentation on MRI
- URL: http://arxiv.org/abs/2504.04814v1
- Date: Mon, 07 Apr 2025 08:09:27 GMT
- Title: Explainability of AI Uncertainty: Application to Multiple Sclerosis Lesion Segmentation on MRI
- Authors: Nataliia Molchanova, Pedro M. Gordaliza, Alessandro Cagol, Mario Ocampo--Pineda, Po--Jui Lu, Matthias Weigel, Xinjie Chen, Erin S. Beck, Haris Tsagkas, Daniel Reich, Anna Stölting, Pietro Maggi, Delphine Ribes, Adrien Depeursinge, Cristina Granziera, Henning Müller, Meritxell Bach Cuadra,
- Abstract summary: This study introduces a novel framework to explain the potential sources of predictive uncertainty.<n>The proposed analysis shifts the focus from the uncertainty-error relationship towards relevant medical and engineering factors.<n>Our findings reveal that instance-wise uncertainty is strongly related to lesion size, shape, and cortical involvement.
- Score: 30.086986374579414
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Trustworthy artificial intelligence (AI) is essential in healthcare, particularly for high-stakes tasks like medical image segmentation. Explainable AI and uncertainty quantification significantly enhance AI reliability by addressing key attributes such as robustness, usability, and explainability. Despite extensive technical advances in uncertainty quantification for medical imaging, understanding the clinical informativeness and interpretability of uncertainty remains limited. This study introduces a novel framework to explain the potential sources of predictive uncertainty, specifically in cortical lesion segmentation in multiple sclerosis using deep ensembles. The proposed analysis shifts the focus from the uncertainty-error relationship towards relevant medical and engineering factors. Our findings reveal that instance-wise uncertainty is strongly related to lesion size, shape, and cortical involvement. Expert rater feedback confirms that similar factors impede annotator confidence. Evaluations conducted on two datasets (206 patients, almost 2000 lesions) under both in-domain and distribution-shift conditions highlight the utility of the framework in different scenarios.
Related papers
- Secure Diagnostics: Adversarial Robustness Meets Clinical Interpretability [9.522045116604358]
Deep neural networks for medical image classification often fail to generalize consistently in clinical practice.
This paper examines interpretability in deep neural networks fine-tuned for fracture detection by evaluating model performance against adversarial attack.
arXiv Detail & Related papers (2025-04-07T20:26:02Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis [33.91263917157504]
Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems.
This study addresses the interpretability of instance-wise uncertainty values in deep learning models for focal lesion segmentation in magnetic resonance imaging.
arXiv Detail & Related papers (2024-07-08T09:13:30Z) - Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
We present a taxonomy of uncertainty specific to vision-language AI systems.
We also introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error.
arXiv Detail & Related papers (2024-07-02T04:23:54Z) - Word-Sequence Entropy: Towards Uncertainty Estimation in Free-Form Medical Question Answering Applications and Beyond [52.246494389096654]
This paper introduces Word-Sequence Entropy (WSE), a method that calibrates uncertainty at both the word and sequence levels.
We compare WSE with six baseline methods on five free-form medical QA datasets, utilizing seven popular large language models (LLMs)
arXiv Detail & Related papers (2024-02-22T03:46:08Z) - Can Physician Judgment Enhance Model Trustworthiness? A Case Study on
Predicting Pathological Lymph Nodes in Rectal Cancer [35.293442328112036]
We employed a transformer to predict lymph node metastasis in rectal cancer using clinical data and magnetic resonance imaging.
We estimated the model's uncertainty using meta-level information like prediction probability variance and quantified agreement.
Our assessment of whether this agreement reduces uncertainty found no significant effect.
arXiv Detail & Related papers (2023-12-15T04:36:13Z) - Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation [8.64414399041931]
Uncertainty quantification (UQ) is an indicator of the trustworthiness of automated deep-learning (DL) tools in the context of white matter lesion (WML) segmentation.
We develop measures for quantifying uncertainty at lesion and patient scales, derived from structural prediction discrepancies.
The results from a multi-centric MRI dataset of 444 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and patient scales.
arXiv Detail & Related papers (2023-11-15T13:04:57Z) - Explainable AI for clinical risk prediction: a survey of concepts,
methods, and modalities [2.9404725327650767]
Review of progress in developing explainable models for clinical risk prediction.
emphasizes the need for external validation and the combination of diverse interpretability methods.
End-to-end approach to explainability in clinical risk prediction is essential for success.
arXiv Detail & Related papers (2023-08-16T14:51:51Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.