An Efficient Approach for Cooperative Multi-Agent Learning Problems
- URL: http://arxiv.org/abs/2504.04850v1
- Date: Mon, 07 Apr 2025 09:03:35 GMT
- Title: An Efficient Approach for Cooperative Multi-Agent Learning Problems
- Authors: Ángel Aso-Mollar, Eva Onaindia,
- Abstract summary: We propose a central framework for learning a policy that models the simultaneous behavior of multiple agents.<n>Our approach addresses the coordination problem via a sequential abstraction, which overcomes the scalability problems typical to centralized methods.<n>Our experimental results demonstrate that the proposed approach successfully coordinates agents across a variety of Multi-Agent Learning environments.
- Score: 0.8287206589886881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we propose a centralized Multi-Agent Learning framework for learning a policy that models the simultaneous behavior of multiple agents that need to coordinate to solve a certain task. Centralized approaches often suffer from the explosion of an action space that is defined by all possible combinations of individual actions, known as joint actions. Our approach addresses the coordination problem via a sequential abstraction, which overcomes the scalability problems typical to centralized methods. It introduces a meta-agent, called \textit{supervisor}, which abstracts joint actions as sequential assignments of actions to each agent. This sequential abstraction not only simplifies the centralized joint action space but also enhances the framework's scalability and efficiency. Our experimental results demonstrate that the proposed approach successfully coordinates agents across a variety of Multi-Agent Learning environments of diverse sizes.
Related papers
- Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
We propose an approach for rewarding strategies where agents collectively exhibit novel behaviors.
Jim rewards joint trajectories based on a centralized measure of novelty designed to function in continuous environments.
Results show that joint exploration is crucial for solving tasks where the optimal strategy requires a high level of coordination.
arXiv Detail & Related papers (2024-02-06T13:02:00Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action
Spaces [9.578169216444813]
This paper proposes an approach to coordinating multi-robot manipulation through learned latent action spaces that are shared across different agents.
We validate our method in simulated multi-robot manipulation tasks and demonstrate improvement over previous baselines in terms of sample efficiency and learning performance.
arXiv Detail & Related papers (2022-11-28T23:20:47Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
We investigate a novel approach to decentralized multi-agent learning and planning.
In particular, this method is inspired by the cohesion, coordination, and behavior of ant colonies.
The approach combines single-agent RL and an ant-colony-inspired decentralized, stigmergic algorithm for multi-agent path planning and environment modification.
arXiv Detail & Related papers (2021-05-08T01:04:51Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.