論文の概要: How Is Generative AI Used for Persona Development?: A Systematic Review of 52 Research Articles
- arxiv url: http://arxiv.org/abs/2504.04927v1
- Date: Mon, 07 Apr 2025 11:09:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:10:35.282401
- Title: How Is Generative AI Used for Persona Development?: A Systematic Review of 52 Research Articles
- Title(参考訳): ペルソナ開発に使用されるジェネレーティブAI : 52の論文の体系的レビュー
- Authors: Danial Amin, Joni Salminen, Farhan Ahmed, Sonja M. H. Tervola, Sankalp Sethi, Bernard J. Jansen,
- Abstract要約: 本研究は2022~2024年の52項目を体系的にレビューし,重要な知見を得た。
クローズドな商業モデルはペルソナ開発によく使われ、モノカルチャーを生み出します。
AI生成したペルソナのペルソナ評価には大きなギャップがある。
人間とAIのコラボレーションモデルは、人間の監視が倫理基準の維持に不可欠であるにもかかわらず、未開発である。
- 参考スコア(独自算出の注目度): 20.447501150811764
- License:
- Abstract: Although Generative AI (GenAI) has the potential for persona development, many challenges must be addressed. This research systematically reviews 52 articles from 2022-2024, with important findings. First, closed commercial models are frequently used in persona development, creating a monoculture Second, GenAI is used in various stages of persona development (data collection, segmentation, enrichment, and evaluation). Third, similar to other quantitative persona development techniques, there are major gaps in persona evaluation for AI generated personas. Fourth, human-AI collaboration models are underdeveloped, despite human oversight being crucial for maintaining ethical standards. These findings imply that realizing the full potential of AI-generated personas will require substantial efforts across academia and industry. To that end, we provide a list of research avenues to inspire future work.
- Abstract(参考訳): Generative AI(GenAI)はペルソナ開発の可能性を持っているが、多くの課題に対処する必要がある。
本研究は2022~2024年の52項目を体系的にレビューし,重要な知見を得た。
まず、クローズドな商業モデルがペルソナ開発に頻繁に使われ、モノカルチャーを創出する第二に、GenAIはペルソナ開発のさまざまな段階(データ収集、セグメンテーション、豊か化、評価)で使用される。
第3に、他の定量的ペルソナ開発手法と同様に、AI生成ペルソナに対するペルソナ評価には大きなギャップがある。
第4に、人間とAIのコラボレーションモデルは、倫理的基準を維持する上で人的監督が不可欠であるにもかかわらず、未開発である。
これらの知見は、AIが生成するペルソナの可能性を最大限に実現するためには、学界や業界全体でかなりの努力が必要であることを示唆している。
そのために、今後の研究を刺激する研究の道のリストを提供する。
関連論文リスト
- Human-AI Teaming Using Large Language Models: Boosting Brain-Computer Interfacing (BCI) and Brain Research [1.7265013728931]
我々は,Janusian設計原則の集合に基づいて,人間とAIのコラボレーションの概念を紹介する。
ChatBCIは、人間とAIのコラボレーションを可能にするPythonベースのツールボックスである。
我々のアプローチは、幅広い神経技術および神経科学のトピックに簡単に拡張できる。
論文 参考訳(メタデータ) (2024-12-30T20:26:03Z) - Research Integrity and GenAI: A Systematic Analysis of Ethical Challenges Across Research Phases [0.0]
学界における生成AI(GenAI)ツールの急速な開発と利用は、ユーザにとって複雑で多面的な倫理的課題を提示している。
本研究は、さまざまな研究段階におけるGenAIの使用による倫理的懸念について検討することを目的とする。
論文 参考訳(メタデータ) (2024-12-13T13:31:45Z) - Measuring Human Contribution in AI-Assisted Content Generation [66.06040950325969]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - The collective use and perceptions of generative AI tools in digital humanities research: Survey-based results [0.6906005491572401]
創造的な人工知能技術は、デジタルヒューマニティに重要な意味を持つ研究環境に革命をもたらした。
本稿では、DH研究者がChatGPTなどの生成AI技術を研究に採用し、批判的に評価する方法について考察する。
論文 参考訳(メタデータ) (2024-04-18T18:33:00Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Towards Human-centered Explainable AI: A Survey of User Studies for Model Explanations [18.971689499890363]
我々は過去5年間に人間によるXAI評価で97コア論文を特定し分析してきた。
我々の研究は、XAIがレコメンダシステムなど特定のアプリケーション領域で急速に普及していることを示している。
我々は,XAI研究者や実践者を対象としたユーザスタディの設計と実施に関する実践的ガイドラインを提案する。
論文 参考訳(メタデータ) (2022-10-20T20:53:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。