論文の概要: Joint Pedestrian and Vehicle Traffic Optimization in Urban Environments using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2504.05018v1
- Date: Mon, 07 Apr 2025 12:41:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:09:10.229726
- Title: Joint Pedestrian and Vehicle Traffic Optimization in Urban Environments using Reinforcement Learning
- Title(参考訳): 強化学習を用いた都市環境における歩行者と車両の交通最適化
- Authors: Bibek Poudel, Xuan Wang, Weizi Li, Lei Zhu, Kevin Heaslip,
- Abstract要約: 強化学習は適応的な交通信号制御に重要な可能性を秘めている。
本研究では,現実世界の都市回廊に沿った8つの交通信号の適応制御のための深いRLフレームワークを提案する。
その結果、従来の固定時間信号よりも大幅に性能が向上した。
- 参考スコア(独自算出の注目度): 11.107470982920262
- License:
- Abstract: Reinforcement learning (RL) holds significant promise for adaptive traffic signal control. While existing RL-based methods demonstrate effectiveness in reducing vehicular congestion, their predominant focus on vehicle-centric optimization leaves pedestrian mobility needs and safety challenges unaddressed. In this paper, we present a deep RL framework for adaptive control of eight traffic signals along a real-world urban corridor, jointly optimizing both pedestrian and vehicular efficiency. Our single-agent policy is trained using real-world pedestrian and vehicle demand data derived from Wi-Fi logs and video analysis. The results demonstrate significant performance improvements over traditional fixed-time signals, reducing average wait times per pedestrian and per vehicle by up to 67% and 52%, respectively, while simultaneously decreasing total accumulated wait times for both groups by up to 67% and 53%. Additionally, our results demonstrate generalization capabilities across varying traffic demands, including conditions entirely unseen during training, validating RL's potential for developing transportation systems that serve all road users.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、適応的な交通信号制御に重要な可能性を秘めている。
既存のRLベースの手法は、車両の渋滞を軽減する効果を示すが、車両中心の最適化に重点を置いているため、歩行者の移動性や安全上の課題は未解決のままである。
本稿では,歩行者と車両の効率の両面を協調的に最適化し,現実世界の都市回廊に沿った8つの交通信号の適応制御のための深いRLフレームワークを提案する。
我々の単一エージェントポリシーは、Wi-Fiログとビデオ分析から得られた現実の歩行者および車両需要データを用いて訓練されている。
その結果,従来の定時信号よりも優れた性能を示し,歩行者平均待ち時間を最大67%,車両平均待ち時間を最大52%削減し,同時に両グループの総待ち時間を最大67%,車両平均待ち時間を最大53%削減した。
さらに,本研究は,全道路利用者を対象とした交通システム開発におけるRLの可能性を検証することを目的として,訓練中に全く見つからない条件を含む,様々な交通需要にまたがる一般化能力を示す。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - GARLIC: GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [81.82487256783674]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
本稿では,高密度および不均一な交通シナリオにおける軌跡や意図を予測できる分散マルチエージェント強化学習(MARL)アルゴリズムを提案する。
インテント対応プランニングのアプローチであるiPLANにより、エージェントは近くのドライバーの意図をローカルな観察からのみ推測できる。
論文 参考訳(メタデータ) (2023-06-09T20:12:02Z) - Deep Reinforcement Learning to Maximize Arterial Usage during Extreme
Congestion [4.934817254755007]
本稿では,過度の混雑中における多車線高速道路の交通渋滞を軽減するための深層強化学習(DRL)手法を提案する。
エージェントは、渋滞した高速道路交通に対する適応的な抑止戦略を学ぶために訓練される。
エージェントは、急激な混雑時の非作用と比較して平均交通速度を21%向上させることができる。
論文 参考訳(メタデータ) (2023-05-16T16:53:27Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。