論文の概要: Online Cluster-Based Parameter Control for Metaheuristic
- arxiv url: http://arxiv.org/abs/2504.05144v1
- Date: Mon, 07 Apr 2025 14:48:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:09:08.654267
- Title: Online Cluster-Based Parameter Control for Metaheuristic
- Title(参考訳): メタヒューリスティックのためのオンラインクラスタベースパラメータ制御
- Authors: Vasileios A. Tatsis, Dimos Ioannidis,
- Abstract要約: 本稿では,クラスタベースメタヒューリスティックスのためのクラスタベース適応(CPA)と呼ばれる,汎用的なオンラインパラメータチューニング手法を提案する。
主な考え方は、パラメータ探索空間内の有望な領域の同定と、これらの領域に関する新しいパラメータの生成である。
得られた結果は統計的に解析され、高度な自動チューニング手法を含む最先端のアルゴリズムと比較される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The concept of parameter setting is a crucial and significant process in metaheuristics since it can majorly impact their performance. It is a highly complex and challenging procedure since it requires a deep understanding of the optimization algorithm and the optimization problem at hand. In recent years, the upcoming rise of autonomous decision systems has attracted ongoing scientific interest in this direction, utilizing a considerable number of parameter-tuning methods. There are two types of methods: offline and online. Online methods usually excel in complex real-world problems, as they can offer dynamic parameter control throughout the execution of the algorithm. The present work proposes a general-purpose online parameter-tuning method called Cluster-Based Parameter Adaptation (CPA) for population-based metaheuristics. The main idea lies in the identification of promising areas within the parameter search space and in the generation of new parameters around these areas. The method's validity has been demonstrated using the differential evolution algorithm and verified in established test suites of low- and high-dimensional problems. The obtained results are statistically analyzed and compared with state-of-the-art algorithms, including advanced auto-tuning approaches. The analysis reveals the promising solid CPA's performance as well as its robustness under a variety of benchmark problems and dimensions.
- Abstract(参考訳): パラメータ設定の概念はメタヒューリスティックスにおいて重要なプロセスである。
最適化アルゴリズムと最適化問題の深い理解を必要とするため、非常に複雑で困難な手順である。
近年, 自律的な意思決定システムの台頭は, かなりの数のパラメータチューニング手法を利用して, 科学的関心をこの方向に惹きつけている。
オフラインとオンラインの2つの方法がある。
オンラインメソッドは通常、アルゴリズムの実行を通して動的パラメータ制御を提供することができるため、複雑な現実世界の問題に優れる。
本稿では,集団型メタヒューリスティックスのためのクラスタベースパラメータ適応(CPA)と呼ばれる,汎用的なオンラインパラメータチューニング手法を提案する。
主な考え方は、パラメータ探索空間内の有望な領域の同定と、これらの領域に関する新しいパラメータの生成である。
この手法の有効性は微分進化アルゴリズムを用いて実証され、低次元および高次元問題の確立されたテストスイートで検証されている。
得られた結果は統計的に解析され、高度な自動チューニング手法を含む最先端のアルゴリズムと比較される。
この分析は、有望なCPAの性能と、様々なベンチマーク問題や寸法の下での堅牢性を明らかにしている。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Hyperparameter Adaptive Search for Surrogate Optimization: A
Self-Adjusting Approach [1.6317061277457001]
サーロゲート最適化(SO)アルゴリズムは高価なブラックボックス関数の最適化を約束している。
提案手法は,各問題とSOアプローチに特有の最も影響力のあるハイパーパラメータを同定し,修正する。
実験により,様々なSOアルゴリズムの性能向上におけるHASSOの有効性が示された。
論文 参考訳(メタデータ) (2023-10-12T01:26:05Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
現在、多くの研究が、パラメータのごく一部のみを微調整し、異なるタスク間で共有されるパラメータのほとんどを保持することを提案している。
これらの手法は, いずれも細粒度モデルであり, 新たな理論的解析を行う。
我々の理論に根ざした空間性の有効性にもかかわらず、調整可能なパラメータをどう選ぶかという問題はまだ未解決のままである。
論文 参考訳(メタデータ) (2022-11-28T17:41:48Z) - Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm
Configuration [32.055812915031666]
与えられたサイズの最適パラメータポートフォリオの計算方法を示す。
可能な値のポートフォリオのみからパラメータを選択できる最適制御ポリシーを解析することにより、このベンチマークを拡張します。
動的アルゴリズム構成のためのDDQN強化学習手法の挙動を解析することにより,ベンチマークの有用性を実証する。
論文 参考訳(メタデータ) (2022-02-07T15:00:30Z) - Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design [0.0]
本稿では, 鉄筋コンクリート(RC)構造物の設計最適化のためのメタヒューリスティック手法のパラメータを調整するためのいくつかの手法を提案する。
平均性能曲線の下での面積に基づいて, 実用性指標を提案する。
論文 参考訳(メタデータ) (2021-10-12T17:34:39Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - Learning adaptive differential evolution algorithm from optimization
experiences by policy gradient [24.2122434523704]
本稿では,一連の問題に対する最適化経験から学習した適応パラメータ制御手法を提案する。
提案した微分進化の制御パラメータを適応的に提供できるエージェントを学習するために、強化学習アルゴリズム、名前付きポリシーを適用した。
提案アルゴリズムは、CEC'13とCEC'17テストスイートでよく知られた9つの進化的アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2021-02-06T12:01:20Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Online Parameter Estimation for Safety-Critical Systems with Gaussian
Processes [6.122161391301866]
オンラインパラメータ推定のためのガウス過程(GP)に基づくベイズ最適化フレームワークを提案する。
パラメータ空間の応答面上の効率的な探索戦略を用いて、最小限の機能評価で大域最適解を求める。
我々は,パラメータの変化を考慮したシミュレーションにおいて,アクティベートされた平面振子と安全臨界振子について実演する。
論文 参考訳(メタデータ) (2020-02-18T20:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。