Fault Diagnosis across Heterogeneous Domains via Self-Adaptive Temporal-Spatial Attention and Sample Generation
- URL: http://arxiv.org/abs/2505.11083v1
- Date: Fri, 16 May 2025 10:14:10 GMT
- Title: Fault Diagnosis across Heterogeneous Domains via Self-Adaptive Temporal-Spatial Attention and Sample Generation
- Authors: Guangqiang Li, M. Amine Atoui, Xiangshun Li,
- Abstract summary: A fault diagnosis model named self-adaptive temporal-spatial attention network (TSA-SAN) is proposed.<n>The proposed model significantly outperforms the state-of-the-art methods.
- Score: 1.9389881806157316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods have shown promising performance in fault diagnosis for multimode process. Most existing studies assume that the collected health state categories from different operating modes are identical. However, in real industrial scenarios, these categories typically exhibit only partial overlap. The incompleteness of the available data and the large distributional differences between the operating modes pose a significant challenge to existing fault diagnosis methods. To address this problem, a novel fault diagnosis model named self-adaptive temporal-spatial attention network (TSA-SAN) is proposed. First, inter-mode mappings are constructed using healthy category data to generate multimode samples. To enrich the diversity of the fault data, interpolation is performed between healthy and fault samples. Subsequently, the fault diagnosis model is trained using real and generated data. The self-adaptive instance normalization is established to suppress irrelevant information while retaining essential statistical features for diagnosis. In addition, a temporal-spatial attention mechanism is constructed to focus on the key features, thus enhancing the generalization ability of the model. The extensive experiments demonstrate that the proposed model significantly outperforms the state-of-the-art methods. The code will be available on Github at https://github.com/GuangqiangLi/TSA-SAN.
Related papers
- UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model [53.34835793648352]
We propose UniSegDiff, a novel diffusion model framework for lesion segmentation.<n>UniSegDiff addresses lesion segmentation in a unified manner across multiple modalities and organs.<n> Comprehensive experimental results demonstrate that UniSegDiff significantly outperforms previous state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2025-07-24T12:33:10Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - Attention-Based Multiscale Temporal Fusion Network for Uncertain-Mode Fault Diagnosis in Multimode Processes [1.9389881806157316]
Fault diagnosis in multimode processes plays a critical role in ensuring the safe operation of industrial systems.<n>It faces a great challenge yet to be addressed - that is, the significant distributional differences among monitoring data from multiple modes.<n>This paper introduces a novel method called attention-based multiscale temporal fusion network.<n>The proposed model achieves superior diagnostic performance and maintains a small model size.
arXiv Detail & Related papers (2025-04-07T15:16:22Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Dual adversarial and contrastive network for single-source domain generalization in fault diagnosis [1.9389881806157316]
This paper proposes a dual adversarial and contrastive network (DAC) for single-source domain generalization fault diagnosis.<n>The main idea of DAC is to generate diverse sample features and extract domain-invariant feature representations.<n>Experiments on the Tennessee Eastman process and continuous stirred-tank reactor demonstrate that DAC achieves high classification accuracy on unseen modes.
arXiv Detail & Related papers (2024-07-19T02:06:41Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on
Broad Learning System [26.733033919978364]
We propose a novel approach to achieve real-time multi-mode fault diagnosis in industrial systems.
Our approach uses an extended evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers.
The effectiveness of the proposed approach is demonstrated on the multi-mode Tennessee Eastman process dataset.
arXiv Detail & Related papers (2023-04-29T04:42:44Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - Black-Box Diagnosis and Calibration on GAN Intra-Mode Collapse: A Pilot
Study [116.05514467222544]
Generative adversarial networks (GANs) nowadays are capable of producing images of incredible realism.
One concern raised is whether the state-of-the-art GAN's learned distribution still suffers from mode collapse.
This paper explores to diagnose GAN intra-mode collapse and calibrate that, in a novel black-box setting.
arXiv Detail & Related papers (2021-07-23T06:03:55Z) - Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis
of Intermediate-Severity Faults? [9.1591191545173]
Intermediate-Severity (IS) faults present milder symptoms compared to severe faults.
The lack of IS fault examples in the training data can pose severe risks to Fault Detection and Diagnosis (FDD) methods.
We discuss how to design more effective ensemble models for detecting and diagnosing IS faults.
arXiv Detail & Related papers (2020-07-07T02:05:04Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.