Multi-scale Bottleneck Transformer for Weakly Supervised Multimodal Violence Detection
- URL: http://arxiv.org/abs/2405.05130v1
- Date: Wed, 8 May 2024 15:27:08 GMT
- Title: Multi-scale Bottleneck Transformer for Weakly Supervised Multimodal Violence Detection
- Authors: Shengyang Sun, Xiaojin Gong,
- Abstract summary: Weakly supervised multimodal violence detection aims to learn a violence detection model by leveraging multiple modalities.
We propose a new weakly supervised MVD method that explicitly addresses the challenges of information redundancy, modality imbalance, and modality asynchrony.
Experiments on the largest-scale XD-Violence dataset demonstrate that the proposed method achieves state-of-the-art performance.
- Score: 9.145305176998447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised multimodal violence detection aims to learn a violence detection model by leveraging multiple modalities such as RGB, optical flow, and audio, while only video-level annotations are available. In the pursuit of effective multimodal violence detection (MVD), information redundancy, modality imbalance, and modality asynchrony are identified as three key challenges. In this work, we propose a new weakly supervised MVD method that explicitly addresses these challenges. Specifically, we introduce a multi-scale bottleneck transformer (MSBT) based fusion module that employs a reduced number of bottleneck tokens to gradually condense information and fuse each pair of modalities and utilizes a bottleneck token-based weighting scheme to highlight more important fused features. Furthermore, we propose a temporal consistency contrast loss to semantically align pairwise fused features. Experiments on the largest-scale XD-Violence dataset demonstrate that the proposed method achieves state-of-the-art performance. Code is available at https://github.com/shengyangsun/MSBT.
Related papers
- Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
This paper delves into the task of arbitrary modality salient object detection (AM SOD)
It aims to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images.
A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD.
arXiv Detail & Related papers (2024-05-06T11:02:02Z) - Dynamic Multimodal Information Bottleneck for Multimodality
Classification [26.65073424377933]
We propose a dynamic multimodal information bottleneck framework for attaining a robust fused feature representation.
Specifically, our information bottleneck module serves to filter out the task-irrelevant information and noises in the fused feature.
Our method surpasses the state-of-the-art and is significantly more robust, being the only method to remain performance when large-scale noisy channels exist.
arXiv Detail & Related papers (2023-11-02T08:34:08Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
We explore the great potential of a pre-trained vision Transformer (ViT) to bridge the vast distribution gap between two modalities.
We propose a mask modeling strategy that randomly masks a specific modality of some tokens to enforce the interaction between tokens from different modalities interacting proactively.
Experiments demonstrate that our plug-and-play training augmentation techniques can significantly boost state-of-the-art one-stream and two trackersstream to a large extent in terms of both tracking precision and success rate.
arXiv Detail & Related papers (2023-07-09T08:58:47Z) - Multimodal Industrial Anomaly Detection via Hybrid Fusion [59.16333340582885]
We propose a novel multimodal anomaly detection method with hybrid fusion scheme.
Our model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTecD-3 AD dataset.
arXiv Detail & Related papers (2023-03-01T15:48:27Z) - MS-DETR: Multispectral Pedestrian Detection Transformer with Loosely Coupled Fusion and Modality-Balanced Optimization [43.04788370184486]
misalignment and modality imbalance are the most significant issues in multispectral pedestrian detection.
MS-DETR consists of two modality-specific backbones and Transformer encoders, followed by a multi-modal Transformer decoder.
Our end-to-end MS-DETR shows superior performance on the challenging KAIST, CVC-14 and LLVIP benchmark datasets.
arXiv Detail & Related papers (2023-02-01T07:45:10Z) - LMR-CBT: Learning Modality-fused Representations with CB-Transformer for
Multimodal Emotion Recognition from Unaligned Multimodal Sequences [5.570499497432848]
We propose an efficient neural network to learn modality-fused representations with CB-Transformer (LMR-CBT) for multimodal emotion recognition.
We conduct word-aligned and unaligned experiments on three challenging datasets.
arXiv Detail & Related papers (2021-12-03T03:43:18Z) - StreaMulT: Streaming Multimodal Transformer for Heterogeneous and
Arbitrary Long Sequential Data [0.0]
StreaMulT is a Streaming Multimodal Transformer relying on cross-modal attention and on a memory bank to process arbitrarily long input sequences at training time and run in a streaming way at inference.
StreaMulT improves the state-of-the-art metrics on CMU-MOSEI dataset for Multimodal Sentiment Analysis task, while being able to deal with much longer inputs than other multimodal models.
arXiv Detail & Related papers (2021-10-15T11:32:17Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.