論文の概要: BRIDGES: Bridging Graph Modality and Large Language Models within EDA Tasks
- arxiv url: http://arxiv.org/abs/2504.05180v1
- Date: Mon, 07 Apr 2025 15:27:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:59.551123
- Title: BRIDGES: Bridging Graph Modality and Large Language Models within EDA Tasks
- Title(参考訳): BRIDGES:EDAタスク内でグラフモダリティと大規模言語モデルをブリッジする
- Authors: Wei Li, Yang Zou, Christopher Ellis, Ruben Purdy, Shawn Blanton, José M. F. Moura,
- Abstract要約: LLMのパフォーマンスは、グラフがシーケンシャルテキストとして表現されるときに悩む。
EDAタスクのための LLM にグラフモダリティを組み込むためのフレームワークBRIDGES を紹介する。
その結果、テキストのみのベースラインに比べて、複数のタスクで2倍から10倍の改善が見られた。
- 参考スコア(独自算出の注目度): 12.683482535955314
- License:
- Abstract: While many EDA tasks already involve graph-based data, existing LLMs in EDA primarily either represent graphs as sequential text, or simply ignore graph-structured data that might be beneficial like dataflow graphs of RTL code. Recent studies have found that LLM performance suffers when graphs are represented as sequential text, and using additional graph information significantly boosts performance. To address these challenges, we introduce BRIDGES, a framework designed to incorporate graph modality into LLMs for EDA tasks. BRIDGES integrates an automated data generation workflow, a solution that combines graph modality with LLM, and a comprehensive evaluation suite. First, we establish an LLM-driven workflow to generate RTL and netlist-level data, converting them into dataflow and netlist graphs with function descriptions. This workflow yields a large-scale dataset comprising over 500,000 graph instances and more than 1.5 billion tokens. Second, we propose a lightweight cross-modal projector that encodes graph representations into text-compatible prompts, enabling LLMs to effectively utilize graph data without architectural modifications. Experimental results demonstrate 2x to 10x improvements across multiple tasks compared to text-only baselines, including accuracy in design retrieval, type prediction and perplexity in function description, with negligible computational overhead (<1% model weights increase and <30% additional runtime overhead). Even without additional LLM finetuning, our results outperform text-only by a large margin. We plan to release BRIDGES, including the dataset, models, and training flow.
- Abstract(参考訳): 多くのEDAタスクはグラフベースのデータを含んでいるが、EDAの既存のLCMはグラフをシーケンシャルテキストとして表現するか、RTLコードのデータフローグラフのように有益なグラフ構造化データを単に無視する。
近年の研究では,グラフを逐次テキストとして表現する場合にLLMの性能が低下し,追加のグラフ情報を用いることで性能が著しく向上することが報告されている。
これらの課題に対処するため,EDAタスクのLLMにグラフモダリティを組み込むフレームワークBRIDGESを紹介した。
BRIDGESは、グラフのモダリティとLLMを組み合わせたソリューションである自動データ生成ワークフローと、包括的な評価スイートを統合している。
まず、RTLとネットリストレベルのデータを生成し、それらを関数記述付きデータフローとネットリストグラフに変換するLLM駆動のワークフローを確立する。
このワークフローは50万以上のグラフインスタンスと15億以上のトークンからなる大規模なデータセットを生成する。
第2に,グラフ表現をテキスト互換のプロンプトに符号化する軽量なクロスモーダルプロジェクタを提案する。
実験結果は、設計検索の精度、型予測、関数記述の複雑度など、テキストのみのベースラインと比較して、複数のタスクで2倍から10倍の改善が示され、計算オーバーヘッドは無視できる(モデル重みが1%増加し、ランタイムオーバーヘッドが30%増加した)。
LLMの微調整を余儀なくしても,テキストのみの性能は大きなマージンで向上した。
データセット、モデル、トレーニングフローを含むBRIDGESをリリースする予定です。
関連論文リスト
- Plan-over-Graph: Towards Parallelable LLM Agent Schedule [53.834646147919436]
大規模言語モデル(LLM)はタスク計画の推論において例外的な能力を示した。
本稿では,まず実生活のテキストタスクを実行可能なサブタスクに分解し,抽象的なタスクグラフを構築する,新しいパラダイムであるプランオーバーグラフを提案する。
モデルはこのタスクグラフを入力として理解し、並列実行計画を生成する。
論文 参考訳(メタデータ) (2025-02-20T13:47:51Z) - Democratizing Large Language Model-Based Graph Data Augmentation via Latent Knowledge Graphs [22.218522445858344]
グラフデータの不足やノイズによるグラフ表現学習には,データ拡張が必要である。
我々は、LCMのガイダンスであるDemoGraphを用いて、ブラックボックスのコンテキスト駆動グラフデータ拡張手法を提案する。
本手法は,電子健康記録(EHRs)のシナリオに優れ,文脈知識の最大限活用を実証する。
論文 参考訳(メタデータ) (2025-02-19T09:00:32Z) - GraphiT: Efficient Node Classification on Text-Attributed Graphs with Prompt Optimized LLMs [0.0]
GraphiT(Graphs in Text)は、グラフをテキストフォーマットにエンコードするフレームワークである。
GraphiTがすぐに微調整することなく、測定可能な結果をもたらす方法を示します。
論文 参考訳(メタデータ) (2025-02-14T19:38:41Z) - Enhance Graph Alignment for Large Language Models [33.96082485852042]
グラフへのアプローチは、大規模言語モデルがグラフ情報を処理できることで人気がある。
既存の手法は、自己監督タスクと下流タスクの間に不一致がある。
協調タスクテンプレートの恩恵を受けるために,グラフアライメント大言語モデル(GALLM)を提案する。
論文 参考訳(メタデータ) (2024-10-15T07:50:34Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [88.4320775961431]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な性能を達成している。
LLMがグラフデータを効果的に処理し、トポロジ構造を利用して性能を向上させることができるかどうかを評価することを目的とする。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
論文 参考訳(メタデータ) (2023-10-07T23:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。