Quantum Program Linting with LLMs: Emerging Results from a Comparative Study
- URL: http://arxiv.org/abs/2504.05204v1
- Date: Mon, 07 Apr 2025 15:51:31 GMT
- Title: Quantum Program Linting with LLMs: Emerging Results from a Comparative Study
- Authors: Seung Yeob Shin, Fabrizio Pastore, Domenico Bianculli,
- Abstract summary: This study investigates the feasibility of employing Large Language Models (LLMs) to develop a novel linting technique for quantum software development.<n>We introduce LintQ-LLM, an LLM-based linting tool designed to detect quantum-specific problems comparable to those identified by LintQ.
- Score: 5.062046608347911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring the quality of quantum programs is increasingly important; however, traditional static analysis techniques are insufficient due to the unique characteristics of quantum computing. Quantum-specific linting tools, such as LintQ, have been developed to detect quantum-specific programming problems; however, they typically rely on manually crafted analysis queries. The manual effort required to update these tools limits their adaptability to evolving quantum programming practices. To address this challenge, this study investigates the feasibility of employing Large Language Models (LLMs) to develop a novel linting technique for quantum software development and explores potential avenues to advance linting approaches. We introduce LintQ-LLM, an LLM-based linting tool designed to detect quantum-specific problems comparable to those identified by LintQ. Through an empirical comparative study using real-world Qiskit programs, our results show that LintQ-LLM is a viable solution that complements LintQ, with particular strengths in problem localization, explanation clarity, and adaptability potential for emerging quantum programming frameworks, thus providing a basis for further research. Furthermore, this study discusses several research opportunities for developing more advanced, adaptable, and feedback-aware quantum software quality assurance methods by leveraging LLMs.
Related papers
- Quantum Natural Language Processing: A Comprehensive Review of Models, Methods, and Applications [0.34284444670464664]
It is proposed to categorise QNLP models based on quantum computing principles, architecture, and computational approaches.
This paper attempts to provide a survey on how quantum meets language by mapping state-of-the-art in this area.
arXiv Detail & Related papers (2025-04-14T06:09:26Z) - DeQompile: quantum circuit decompilation using genetic programming for explainable quantum architecture search [1.351147045576948]
We introduce a novel genetic programming-based decompiler framework for reverse-engineering high-level quantum algorithms.
The proposed approach is implemented in the open-source tool DeQompile.
arXiv Detail & Related papers (2025-04-11T07:23:14Z) - Learning to Measure Quantum Neural Networks [10.617463958884528]
We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable.<n>Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters.<n>Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes.
arXiv Detail & Related papers (2025-01-10T02:28:19Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
This paper introduces a novel Bayesian approach using Quantum Bayesian Networks (QBNs) to classify imbalanced datasets.<n>We effectively address the challenge of integrating quantum enhancements with classical machine learning architectures.<n>Our study demonstrates significant advances in detecting and classifying anomalies, contributing to more effective and precise environmental monitoring and management.
arXiv Detail & Related papers (2024-12-24T15:44:26Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Validation of an Analysability Model in Hybrid Quantum Software [0.0]
This proposal aims to validate a quality model focused on the analysability of hybrid software through an international collab orative approach.
This approach allows for a more detailed analysis and validation methodology and establishes a framework for future research and developments in software quality assessment in quantum computing.
arXiv Detail & Related papers (2024-08-02T08:30:31Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Learning Quantum Processes with Quantum Statistical Queries [0.0]
This paper introduces the first learning framework for studying quantum process learning within the Quantum Statistical Query model.
We propose an efficient QPSQ learner for arbitrary quantum processes accompanied by a provable performance guarantee.
This work marks a significant step towards understanding the learnability of quantum processes and shedding light on their security implications.
arXiv Detail & Related papers (2023-10-03T14:15:20Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.