Correcting Class Imbalances with Self-Training for Improved Universal Lesion Detection and Tagging
- URL: http://arxiv.org/abs/2504.05207v1
- Date: Mon, 07 Apr 2025 15:57:03 GMT
- Title: Correcting Class Imbalances with Self-Training for Improved Universal Lesion Detection and Tagging
- Authors: Alexander Shieh, Tejas Sudharshan Mathai, Jianfei Liu, Angshuman Paul, Ronald M. Summers,
- Abstract summary: Universal lesion detection and tagging (ULDT) in CT studies is critical for tumor burden assessment and tracking the progression of lesion status (growth/shrinkage) over time.<n>Prior work used the DeepLesion dataset (4,427 patients, 10,594 studies, 32,120 CT slices, 32,735 lesions, 8 body part labels) for algorithmic development, but this dataset is not completely annotated and contains class imbalances.<n>We developed a self-training pipeline for ULDT using a limited 11.5% subset of DeepLesion.
- Score: 43.06199185109424
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Universal lesion detection and tagging (ULDT) in CT studies is critical for tumor burden assessment and tracking the progression of lesion status (growth/shrinkage) over time. However, a lack of fully annotated data hinders the development of effective ULDT approaches. Prior work used the DeepLesion dataset (4,427 patients, 10,594 studies, 32,120 CT slices, 32,735 lesions, 8 body part labels) for algorithmic development, but this dataset is not completely annotated and contains class imbalances. To address these issues, in this work, we developed a self-training pipeline for ULDT. A VFNet model was trained on a limited 11.5\% subset of DeepLesion (bounding boxes + tags) to detect and classify lesions in CT studies. Then, it identified and incorporated novel lesion candidates from a larger unseen data subset into its training set, and self-trained itself over multiple rounds. Multiple self-training experiments were conducted with different threshold policies to select predicted lesions with higher quality and cover the class imbalances. We discovered that direct self-training improved the sensitivities of over-represented lesion classes at the expense of under-represented classes. However, upsampling the lesions mined during self-training along with a variable threshold policy yielded a 6.5\% increase in sensitivity at 4 FP in contrast to self-training without class balancing (72\% vs 78.5\%) and a 11.7\% increase compared to the same self-training policy without upsampling (66.8\% vs 78.5\%). Furthermore, we show that our results either improved or maintained the sensitivity at 4FP for all 8 lesion classes.
Related papers
- Class Imbalance Correction for Improved Universal Lesion Detection and Tagging in CT [1.7098468543752943]
We utilize a limited subset of DeepLesion (6%, 1331 lesions, 1309 slices) to train a VFNet model to detect lesions and tag them.
We are the first to report the class imbalance in DeepLesion, and have taken data-driven steps to address it.
arXiv Detail & Related papers (2025-04-08T00:58:26Z) - 3D Universal Lesion Detection and Tagging in CT with Self-Training [3.68620908362189]
We propose a self-training pipeline to detect 3D lesions and tag them according to the body part they occur in.<n>To our knowledge, we are the first to jointly detect lesions in 3D and tag them according to the body part label.
arXiv Detail & Related papers (2025-04-07T15:50:27Z) - Self-Supervised Pretraining Improves Performance and Inference
Efficiency in Multiple Lung Ultrasound Interpretation Tasks [65.23740556896654]
We investigated whether self-supervised pretraining could produce a neural network feature extractor applicable to multiple classification tasks in lung ultrasound analysis.
When fine-tuning on three lung ultrasound tasks, pretrained models resulted in an improvement of the average across-task area under the receiver operating curve (AUC) by 0.032 and 0.061 on local and external test sets respectively.
arXiv Detail & Related papers (2023-09-05T21:36:42Z) - Achieving Reliable and Fair Skin Lesion Diagnosis via Unsupervised Domain Adaptation [43.1078084014722]
Unsupervised domain adaptation (UDA) can integrate large external datasets for developing reliable classifiers.
UDA can effectively mitigate bias against minority groups and enhance fairness in diagnostic systems.
arXiv Detail & Related papers (2023-07-06T17:32:38Z) - SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis [3.1542695050861544]
Deep learning-based supervised methods are widely popular in medical image analysis.
They require a large amount of training data and face issues in generalisability to unseen datasets.
We propose to explore patch-level instance-group discrimination and penalisation of inter-class variation using additive angular margin.
arXiv Detail & Related papers (2023-05-31T21:28:08Z) - Patch-level instance-group discrimination with pretext-invariant
learning for colitis scoring [2.691339855008848]
We introduce a novel patch-level instance-group discrimination with pretext-invariant representation learning (PLD-PIRL) for self-supervised learning (SSL)
Our experiments demonstrate both improved accuracy and robustness compared to the baseline supervised network and several state-of-the-art SSL methods.
arXiv Detail & Related papers (2022-07-11T21:06:29Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
We study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi)
This imFed-Semi problem is addressed by a novel dynamic bank learning scheme, which improves client training by exploiting class proportion information.
We evaluate our approach on two public real-world medical datasets, including the intracranial hemorrhage diagnosis with 25,000 CT slices and skin lesion diagnosis with 10,015 dermoscopy images.
arXiv Detail & Related papers (2022-06-27T06:51:48Z) - Identifying and mitigating bias in algorithms used to manage patients in
a pandemic [4.756860520861679]
Logistic regression models were created to predict COVID-19 mortality, ventilator status and inpatient status using a real-world dataset.
Models showed a 57% decrease in the number of biased trials.
After calibration, the average sensitivity of the predictive models increased from 0.527 to 0.955.
arXiv Detail & Related papers (2021-10-30T21:10:56Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Deep Lesion Tracker: Monitoring Lesions in 4D Longitudinal Imaging
Studies [19.890200389017213]
Deep lesion tracker (DLT) is a deep learning approach that uses both appearance- and anatomical-based signals.
We release the first lesion tracking benchmark, consisting of 3891 lesion pairs from the public DeepLesion database.
DLT generalizes well on an external clinical test set of 100 longitudinal studies, achieving 88% accuracy.
arXiv Detail & Related papers (2020-12-09T05:23:46Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.