Mapping biodiversity at very-high resolution in Europe
- URL: http://arxiv.org/abs/2504.05231v1
- Date: Mon, 07 Apr 2025 16:15:52 GMT
- Title: Mapping biodiversity at very-high resolution in Europe
- Authors: César Leblanc, Lukas Picek, Benjamin Deneu, Pierre Bonnet, Maximilien Servajean, Rémi Palard, Alexis Joly,
- Abstract summary: This paper describes a cascading multimodal pipeline for high-resolution biodiversity mapping across Europe.<n>The proposed pipeline first predicts species compositions using a deep-SDM, a multimodal model trained on remote sensing, climate time series, and species occurrence data at 50x50m resolution.<n>These predictions are then used to generate biodiversity indicator maps and classify habitats with Pl@ntBERT.
- Score: 2.4081658738294283
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper describes a cascading multimodal pipeline for high-resolution biodiversity mapping across Europe, integrating species distribution modeling, biodiversity indicators, and habitat classification. The proposed pipeline first predicts species compositions using a deep-SDM, a multimodal model trained on remote sensing, climate time series, and species occurrence data at 50x50m resolution. These predictions are then used to generate biodiversity indicator maps and classify habitats with Pl@ntBERT, a transformer-based LLM designed for species-to-habitat mapping. With this approach, continental-scale species distribution maps, biodiversity indicator maps, and habitat maps are produced, providing fine-grained ecological insights. Unlike traditional methods, this framework enables joint modeling of interspecies dependencies, bias-aware training with heterogeneous presence-absence data, and large-scale inference from multi-source remote sensing inputs.
Related papers
- Few-shot Species Range Estimation [61.60698161072356]
Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts.<n>We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data.<n>During inference, our model takes a set of spatial locations as input, along with optional metadata such as text or an image, and outputs a species encoding that can be used to predict the range of a previously unseen species in feed-forward manner.
arXiv Detail & Related papers (2025-02-20T19:13:29Z) - G2PDiffusion: Cross-Species Genotype-to-Phenotype Prediction via Evolutionary Diffusion [108.94237816552024]
We propose the first genotype-to-phenotype diffusion model (G2PDiffusion) that generates morphological images from DNA.<n>The model contains three novel components: 1) a MSA retrieval engine that identifies conserved and co-evolutionary patterns; 2) an environment-aware MSA conditional encoder that effectively models complex genotype-environment interactions; and 3) an adaptive phenomic alignment module to improve genotype-phenotype consistency.
arXiv Detail & Related papers (2025-02-07T06:16:31Z) - MiTREE: Multi-input Transformer Ecoregion Encoder for Species Distribution Modelling [2.3776390335270694]
We introduce MiTREE, a multi-input Vision-Transformer-based model with an ecoregion encoder.<n>We evaluate our model on the SatBird Summer and Winter datasets, the goal of which is to predict bird species encounter rates.
arXiv Detail & Related papers (2024-12-25T22:20:47Z) - Multi-Scale and Multimodal Species Distribution Modeling [4.022195138381868]
Species distribution models (SDMs) aim to predict the distribution of species relating occurrence data with environmental variables.
Recent applications of deep learning to SDMs have enabled new avenues, specifically the inclusion of spatial data.
We develop a modular structure for SDMs that allows us to test the effect of scale in both single- and multi-scale settings.
Results on the GeoLifeCLEF 2023 benchmark indicate that considering multimodal data and learning multi-scale representations leads to more accurate models.
arXiv Detail & Related papers (2024-11-06T15:57:20Z) - LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
We focus on the problem of species distribution modeling using global-scale presence-only data.
To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model.
We propose a novel proximity-aware evaluation metric that enables evaluating species distribution models.
arXiv Detail & Related papers (2023-12-13T18:11:37Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
Climate change is a major driver of biodiversity loss.
There are significant knowledge gaps about the distribution of species.
We propose an approach leveraging computer vision to improve species distribution modelling.
arXiv Detail & Related papers (2023-05-01T20:27:11Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.