論文の概要: Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2504.05312v3
- Date: Fri, 27 Jun 2025 09:17:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 15:06:58.340051
- Title: Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
- Title(参考訳): 検索機能強化のための適応型メモリベース最適化に向けて
- Authors: Qitao Qin, Yucong Luo, Yihang Lu, Zhibo Chu, Xianwei Meng,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、外部知識ベースからの非パラメトリック知識をモデルに統合する。
既存のRAGメソッドは、オープンドメイン質問回答(QA)タスクに苦労する。
オープンドメインQAタスクのための拡張RAGのための適応メモリベースの最適化を提案する。
- 参考スコア(独自算出の注目度): 3.294519547931054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available \footnote{https://anonymous.4open.science/r/Amber-B203/}.
- Abstract(参考訳): 外部知識ベースからの非パラメトリック知識をモデルに組み込むことにより,現実的誤りや幻覚を軽減しつつ,応答精度を高めるための有望なアプローチとして,検索・拡張生成(RAG)が出現している。
この方法は質問応答 (QA) などのタスクに広く応用されている。
しかし、既存のRAG手法では、メモリの要約や適応的な検索戦略を使わずに、独立した検索操作を行い、取得した情報を生成に直接組み込むため、冗長な情報からのノイズや情報統合が不十分なため、オープンドメインのQAタスクに苦慮している。
これらの課題に対処するために,エージェントベースメモリ更新器,適応情報収集器,多粒度コンテンツフィルタからなるオープンドメインQAタスクのための適応型メモリベース最適化(Amber)を提案する。
具体的には、Amberは言語モデルのメモリを多エージェント協調アプローチで統合し、最適化し、以前の検索ステップから包括的な知識統合を保証する。
検索クエリを動的に調整し、蓄積した知識に基づいて検索をいつ停止するかを決定し、検索効率と有効性を向上する。
さらに、無関係なコンテンツを複数のレベルでフィルタリングすることでノイズを低減し、全体的なモデル性能を改善するために必要な情報を保持する。
我々は,いくつかのオープンドメインQAデータセットについて広範な実験を行い,本手法とそのコンポーネントの優位性と有効性を示した。
ソースコードは \footnote{https://anonymous.4open.science/r/Amber-B203/} で入手できる。
関連論文リスト
- KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG)は、大規模言語モデルがより広範な知識ソースにアクセスすることを可能にする。
ノイズの多いコンテンツを処理するために生成モデルの能力を向上させることは、ロバストなパフォーマンスに等しく重要であることを実証する。
本稿では,3つの重要なイノベーションを通じて知識利用を改善するKARE-RAGを提案する。
論文 参考訳(メタデータ) (2025-06-03T06:31:17Z) - Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents [73.77930932005354]
我々は,多粒度アソシエーション,適応選択,検索を構築することで,メモリ統合を向上するフレームワークであるMemGASを提案する。
MemGASは多粒度メモリユニットに基づいており、ガウス混合モデルを用いて新しい記憶と過去の記憶をクラスタリングし関連付けている。
4つの長期メモリベンチマークの実験により、MemGASは質問応答と検索タスクの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2025-05-26T06:13:07Z) - Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging [7.047640531842663]
InForageは、動的情報探索プロセスとして検索強化推論を形式化する強化学習フレームワークである。
我々は,複雑な実世界のWebタスクに対する反復探索と推論のトラジェクトリをキャプチャするヒューマンガイドデータセットを構築した。
これらの結果は、堅牢で適応的で効率的な推論エージェントの構築におけるInForageの有効性を強調している。
論文 参考訳(メタデータ) (2025-05-14T12:13:38Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
生成情報検索(GenIR)は、文書識別子(ドシデント)生成タスクとして文書検索を定式化する有望なニューラル検索パラダイムである。
既存のGenIRモデルはトークンレベルのミスアライメントに悩まされており、次のトークンを予測するためにトレーニングされたモデルは、ドキュメントレベルの関連性を効果的にキャプチャできないことが多い。
本稿では,トークンレベルのドシデント生成と文書レベルのドシデンス推定をペアのランク付けによる直接最適化により整合するダイレクトドキュメントレバレンス最適化(DDRO)を提案する。
論文 参考訳(メタデータ) (2025-04-07T15:27:37Z) - Improving Factuality with Explicit Working Memory [68.39261790277615]
大規模な言語モデルは、幻覚として知られる、事実的に不正確なコンテンツを生成することができる。
EWE(Explicit Working Memory)は、外部リソースからのリアルタイムフィードバックを受信するワーキングメモリを統合することで、長文テキスト生成における事実性を高める新しい手法である。
論文 参考訳(メタデータ) (2024-12-24T00:55:59Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG)は質問応答のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する
我々は、ノート中心の適応検索により、知識ソースの奥深くで堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。