論文の概要: Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging
- arxiv url: http://arxiv.org/abs/2505.09316v1
- Date: Wed, 14 May 2025 12:13:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.443175
- Title: Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging
- Title(参考訳): 知識の感覚:情報処理による検索強化推論の最適化
- Authors: Hongjin Qian, Zheng Liu,
- Abstract要約: InForageは、動的情報探索プロセスとして検索強化推論を形式化する強化学習フレームワークである。
我々は,複雑な実世界のWebタスクに対する反復探索と推論のトラジェクトリをキャプチャするヒューマンガイドデータセットを構築した。
これらの結果は、堅牢で適応的で効率的な推論エージェントの構築におけるInForageの有効性を強調している。
- 参考スコア(独自算出の注目度): 7.047640531842663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Augmenting large language models (LLMs) with external retrieval has become a standard method to address their inherent knowledge cutoff limitations. However, traditional retrieval-augmented generation methods employ static, pre-inference retrieval strategies, making them inadequate for complex tasks involving ambiguous, multi-step, or evolving information needs. Recent advances in test-time scaling techniques have demonstrated significant potential in enabling LLMs to dynamically interact with external tools, motivating the shift toward adaptive inference-time retrieval. Inspired by Information Foraging Theory (IFT), we propose InForage, a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process. Unlike existing approaches, InForage explicitly rewards intermediate retrieval quality, encouraging LLMs to iteratively gather and integrate information through adaptive search behaviors. To facilitate training, we construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks. Extensive evaluations across general question answering, multi-hop reasoning tasks, and a newly developed real-time web QA dataset demonstrate InForage's superior performance over baseline methods. These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.
- Abstract(参考訳): 外部検索による大規模言語モデル(LLM)の拡張は,それらの知識遮断制限に対処するための標準手法となっている。
しかし、従来の検索拡張生成手法では、静的で事前参照型の検索戦略を採用しており、曖昧、多段階、進化する情報要求を含む複雑なタスクには不適当である。
テスト時間スケーリング技術の最近の進歩は、LCMが外部ツールと動的に対話できるようにし、適応推論時間検索へのシフトを動機付ける大きな可能性を示している。
情報鍛造理論(IFT)にヒントを得て,動的情報探索プロセスとして検索強化推論を形式化する強化学習フレームワークInForageを提案する。
既存のアプローチとは異なり、InForageは中間的検索品質を明示的に評価し、LLMに適応的な検索行動を通じて情報収集と統合を反復的に促す。
トレーニングを容易にするために,複雑な実世界のWebタスクに対して反復探索と推論のトラジェクトリをキャプチャするヒューマンガイドデータセットを構築した。
一般的な質問応答、マルチホップ推論タスク、および新たに開発されたリアルタイムWeb QAデータセットの広範な評価は、ベースラインメソッドよりもInForageの方が優れたパフォーマンスを示している。
これらの結果は、堅牢で適応的で効率的な推論エージェントの構築におけるInForageの有効性を強調している。
関連論文リスト
- SEM: Reinforcement Learning for Search-Efficient Large Language Models [26.075903427834838]
大きな言語モデル(LLM)は、推論だけでなく、外部ツールの呼び出しでもその能力を実証している。
既存の強化学習アプローチは、しばしば冗長な探索行動を引き起こす。
本研究では,学習後強化学習フレームワークであるSEMを提案する。
論文 参考訳(メタデータ) (2025-05-12T09:45:40Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
生成情報検索(GenIR)は、文書識別子(ドシデント)生成タスクとして文書検索を定式化する有望なニューラル検索パラダイムである。
既存のGenIRモデルはトークンレベルのミスアライメントに悩まされており、次のトークンを予測するためにトレーニングされたモデルは、ドキュメントレベルの関連性を効果的にキャプチャできないことが多い。
本稿では,トークンレベルのドシデント生成と文書レベルのドシデンス推定をペアのランク付けによる直接最適化により整合するダイレクトドキュメントレバレンス最適化(DDRO)を提案する。
論文 参考訳(メタデータ) (2025-04-07T15:27:37Z) - HEISIR: Hierarchical Expansion of Inverted Semantic Indexing for Training-free Retrieval of Conversational Data using LLMs [0.3277163122167434]
本稿では,会話データ検索における意味理解を強化する新しいフレームワークであるHEISIRを紹介する。
Heisir は,(1)階層型トリプレットの定式化と(2)アジュネート・アジュメンテーション(Adjunct Augmentation)という2段階のプロセスを実装し,SVOA(Subject-Verb-Object-Adjunct)四重項からなるセマンティック指標を生成する。
実験の結果,HEISIRは様々な埋め込み型や言語モデルにまたがる微調整モデルよりも優れていた。
論文 参考訳(メタデータ) (2025-03-06T06:39:25Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG)は質問応答のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する
我々は、ノート中心の適応検索により、知識ソースの奥深くで堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
生成的検索は、検索対象として関連する通路の識別子文字列を生成することを目的としている。
我々はLTRGRと呼ばれる生成検索のための学習 torankフレームワークを提案する。
このフレームワークは、現在の生成的検索システムを強化するために、追加の学習からランクまでのトレーニングフェーズのみを必要とする。
論文 参考訳(メタデータ) (2023-06-27T05:48:14Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。