論文の概要: DeepNote: Note-Centric Deep Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2410.08821v2
- Date: Mon, 07 Apr 2025 16:17:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:06:29.661572
- Title: DeepNote: Note-Centric Deep Retrieval-Augmented Generation
- Title(参考訳): DeepNote:ノート中心のDeep Retrieval-Augmented Generation
- Authors: Ruobing Wang, Qingfei Zhao, Yukun Yan, Daren Zha, Yuxuan Chen, Shi Yu, Zhenghao Liu, Yixuan Wang, Shuo Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
- Abstract要約: Retrieval-Augmented Generation (RAG)は質問応答のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する
我々は、ノート中心の適応検索により、知識ソースの奥深くで堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
- 参考スコア(独自算出の注目度): 72.70046559930555
- License:
- Abstract: Retrieval-Augmented Generation (RAG) mitigates factual errors and hallucinations in Large Language Models (LLMs) for question-answering (QA) by incorporating external knowledge. However, existing adaptive RAG methods rely on LLMs to predict retrieval timing and directly use retrieved information for generation, often failing to reflect real information needs and fully leverage retrieved knowledge. We develop DeepNote, an adaptive RAG framework that achieves in-depth and robust exploration of knowledge sources through note-centric adaptive retrieval. DeepNote employs notes as carriers for refining and accumulating knowledge. During in-depth exploration, it uses these notes to determine retrieval timing, formulate retrieval queries, and iteratively assess knowledge growth, ultimately leveraging the best note for answer generation. Extensive experiments and analyses demonstrate that DeepNote significantly outperforms all baselines (+10.2% to +20.1%) and exhibits the ability to gather knowledge with both high density and quality. Additionally, DPO further improves the performance of DeepNote. The code and data are available at https://github.com/thunlp/DeepNote.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、外部知識を取り入れた質問応答(QA)のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する。
しかしながら、既存の適応RAG法は、検索タイミングを予測し、取得した情報を生成に直接使用するためにLLMに依存しており、しばしば実際の情報要求を反映せず、取得した知識を完全に活用する。
我々は,ノート中心の適応検索により,知識ソースの奥深くかつ堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
DeepNoteは、知識の精製と蓄積のためにキャリアとしてメモを使用している。
詳細な調査では、これらのノートを使用して、検索タイミング、検索クエリの定式化、知識の成長を反復的に評価し、最終的には回答生成のためのベストノートを活用する。
大規模な実験と分析により、DeepNoteはすべてのベースライン(+10.2%から+20.1%)を著しく上回り、高い密度と品質で知識を集める能力を示している。
さらに、DPOはDeepNoteのパフォーマンスをさらに改善する。
コードとデータはhttps://github.com/thunlp/DeepNoteで入手できる。
関連論文リスト
- Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
大規模言語モデル(LLM)は、パラメトリックな知識が限られ、ドメイン固有の専門知識が欠如しているため、幻覚に弱いままである。
Retrieval-Augmented Generation (RAG)は、LLMの知識基盤を強化するために外部文書検索を組み込むことによって、この問題に対処する。
発電機に供給する前に外部の知識ソースを洗練するためのコンパクトで効率的でプラガブルなモジュールを導入する。
論文 参考訳(メタデータ) (2025-02-18T16:38:39Z) - Improving Factuality with Explicit Working Memory [68.39261790277615]
大規模な言語モデルは、幻覚として知られる、事実的に不正確なコンテンツを生成することができる。
EWE(Explicit Working Memory)は、外部リソースからのリアルタイムフィードバックを受信するワーキングメモリを統合することで、長文テキスト生成における事実性を高める新しい手法である。
論文 参考訳(メタデータ) (2024-12-24T00:55:59Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems [14.62114319247837]
Retrieval-augmented Generation (RAG)技術は、大規模言語モデル(LLM)のコンテキスト内学習機能を利用して、より正確で関連する応答を生成する。
重要なコンポーネントであるQuery Rewriterモジュールは、検索フレンドリーなクエリを生成することで知識検索を強化する。
これら4つのRAGモジュールは、RAGシステムの応答品質と効率を相乗的に改善する。
論文 参考訳(メタデータ) (2024-07-15T12:35:00Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering [42.66223628527439]
アダプティブ検索拡張生成(ARAG)は、不特定に検索するのではなく、クエリに対する検索の必要性を動的に決定することを目的としている。
この研究は、新しい世界とロングテール知識をカバーする1,271の短い形式の質問を含む、RetrievalQAというベンチマークを提示する。
論文 参考訳(メタデータ) (2024-02-26T09:59:04Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。