論文の概要: Improved Stochastic Texture Filtering Through Sample Reuse
- arxiv url: http://arxiv.org/abs/2504.05562v1
- Date: Mon, 07 Apr 2025 23:28:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:57.377117
- Title: Improved Stochastic Texture Filtering Through Sample Reuse
- Title(参考訳): サンプル再利用による確率的テクスチャフィルタの改良
- Authors: Bartlomiej Wronski, Matt Pharr, Tomas Akenine-Möller,
- Abstract要約: テクスチャフィルタリング (STF) は, 高度なテクスチャ圧縮手法のテクスチャフィルタリングのコストを下げる手法として再開発されている。
テクスチャーの倍率化の間、STFによるフィルターとシェーディングの交換順序はエイリアス化をもたらす。
そこで本研究では,テクスチャフィルターによる微細なテクスチャの品質向上と,画像差の低減を実現する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.9608359347635143
- License:
- Abstract: Stochastic texture filtering (STF) has re-emerged as a technique that can bring down the cost of texture filtering of advanced texture compression methods, e.g., neural texture compression. However, during texture magnification, the swapped order of filtering and shading with STF can result in aliasing. The inability to smoothly interpolate material properties stored in textures, such as surface normals, leads to potentially undesirable appearance changes. We present a novel method to improve the quality of stochastically-filtered magnified textures and reduce the image difference compared to traditional texture filtering. When textures are magnified, nearby pixels filter similar sets of texels and we introduce techniques for sharing texel values among pixels with only a small increase in cost (0.04--0.14~ms per frame). We propose an improvement to weighted importance sampling that guarantees that our method never increases error beyond single-sample stochastic texture filtering. Under high magnification, our method has >10 dB higher PSNR than single-sample STF. Our results show greatly improved image quality both with and without spatiotemporal denoising.
- Abstract(参考訳): 確率的テクスチャフィルタリング(STF)は、先進的なテクスチャ圧縮手法であるニューラルテクスチャ圧縮のテクスチャフィルタリングコストを下げる手法として再開発されている。
しかし, テクスチャ拡大時には, STFによるフィルターやシェーディングの交換順序はエイリアスとなる。
表面の正常のようなテクスチャに蓄積された材料特性を円滑に補間できないことは、潜在的に望ましくない外観変化をもたらす。
本稿では, 従来のテクスチャフィルタリングと比較して, 統計的にフィルタされた拡大したテクスチャの品質を向上し, 画像差を低減させる新しい手法を提案する。
テクスチャを拡大すると,近傍のピクセルが類似したテクセルの集合をフィルタし,少ないコスト (0.04~0.14〜ms) でピクセル間のテクセル値を共有する手法を導入する。
本稿では,重み付き重み付き重み付きサンプリングの改良を提案し,本手法が単一サンプル確率的テクスチャフィルタリング以上の誤差を増大させないことを保証した。
高倍率では,PSNRは単サンプルSTFよりも10dB高い。
以上の結果より,側頭葉側頭葉と側頭葉の両面とも画像品質が有意に改善した。
関連論文リスト
- NeRF-Texture: Synthesizing Neural Radiance Field Textures [77.24205024987414]
与えられた多視点画像からテクスチャを捕捉・合成するためのニューラルレージアンス場(NeRF)を用いた新しいテクスチャ合成法を提案する。
提案したNeRFテクスチャ表現では、微細な幾何学的詳細を持つシーンをメソ構造テクスチャと基盤形状に分割する。
我々は潜伏特徴のパッチマッチングによってNeRFベースのテクスチャを合成できる。
論文 参考訳(メタデータ) (2024-12-13T09:41:48Z) - Filtering After Shading With Stochastic Texture Filtering [1.8377890861896995]
本稿では,シェーディング評価後のテクスチャフィルタの適用により,BSDF 評価前のフィルタよりも精度の高い画像が得られることを示す。
テクスチャフィルタリングは、高品質なテクスチャフィルタの効率的な実装や、圧縮された、スパースなデータ構造に格納されたテクスチャの効率的なフィルタリングを含む、さらなる利点を提供する。
論文 参考訳(メタデータ) (2024-05-14T16:42:07Z) - Infinite Texture: Text-guided High Resolution Diffusion Texture Synthesis [61.189479577198846]
Infinite Textureはテキストプロンプトから任意の大きさのテクスチャ画像を生成する方法である。
本手法は,1つのテクスチャ上に拡散モデルを微調整し,その分布をモデルの出力領域に埋め込むことを学習する。
1つのGPU上で任意の解像度の出力テクスチャ画像を生成するためのスコアアグリゲーションストラテジーによって、我々の微調整拡散モデルが生成される。
論文 参考訳(メタデータ) (2024-05-13T21:53:09Z) - Paint-it: Text-to-Texture Synthesis via Deep Convolutional Texture Map Optimization and Physically-Based Rendering [47.78392889256976]
Paint-itは3Dレンダリングのためのテキスト駆動の高忠実なテクスチャマップ合成法である。
Paint-itはScore-Distillation Sampling(SDS)を利用してテキスト記述からテクスチャマップを合成する
我々は,DC-PBRがテクスチャ周波数に応じて最適化カリキュラムをスケジュールし,SDSからノイズ信号を自然にフィルタすることを示した。
論文 参考訳(メタデータ) (2023-12-18T17:17:08Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
従来の芸術は、主にピクセルワイド・ロスを用いて可視光スペクトルで捉えた低照度画像に焦点を当てていた。
我々は,赤外線カットオフフィルタを除去することにより,低照度環境下で撮影された画像の可視性を高める新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T08:29:19Z) - Lightweight texture transfer based on texture feature preset [1.1863107884314108]
テクスチャ特徴プリセットに基づく軽量なテクスチャ転送を提案する。
結果は視覚的に優れた結果を示すが、モデルのサイズを3.2~3538倍に減らし、プロセスを1.8~5.6倍に高速化する。
論文 参考訳(メタデータ) (2023-06-29T10:37:29Z) - Pyramid Texture Filtering [86.15126028139736]
目立った構造を保ちながらテクスチャをスムーズにするための,シンプルだが効果的な手法を提案する。
ガウスピラミッドの粗いレベルは、しばしば自然にテクスチャを排除し、主要な画像構造を要約する。
本手法は, 異なるスケール, 局所的なコントラスト, 形状のテクスチャから構造を分離する上で, 構造劣化や視覚的アーティファクトの導入を伴わずに有効であることを示す。
論文 参考訳(メタデータ) (2023-05-11T02:05:30Z) - Stochastic Texture Filtering [3.4202659118354104]
フィルタテクスチャルックアップは高品質な画像を生成するのに不可欠である。
提案手法では,BSDF 評価よりも照明評価後のフィルタリングにより,レンダリング方程式の精度が向上することを示す。
リアルタイムレンダリングとオフラインレンダリングの両方でアプリケーションを実演し、追加エラーが最小限であることを示す。
論文 参考訳(メタデータ) (2023-05-09T23:50:25Z) - MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image
Inpainting [35.79101039727397]
画像インペイントにおける画像レベルの予測フィルタリングの利点と課題について検討する。
カーネル予測分岐(KPB)とセマンティック・アンド・イメージ・フィルタリング分岐(SIFB)の2つの分岐を含む,MISF(Multilevel Interactive Siamese Filtering)と呼ばれる新しいフィルタリング手法を提案する。
提案手法は,4つの指標,すなわちL1,PSNR,SSIM,LPIPSにおいて,最先端のベースラインよりも優れる。
論文 参考訳(メタデータ) (2022-03-12T01:32:39Z) - Adaptive Debanding Filter [55.42929350861115]
バンディングアーティファクトは、写真やビデオフレームに階段のような色のバンドとして現れます。
後処理モジュールとして,コンテンツ適応型スムースなフィルタリングと拡張量子化を提案する。
実験結果から,提案した解離フィルタは,最先端の偽輪郭除去アルゴリズムよりも視覚的,定量的に優れていることがわかった。
論文 参考訳(メタデータ) (2020-09-22T20:44:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。