CTI-Unet: Cascaded Threshold Integration for Improved U-Net Segmentation of Pathology Images
- URL: http://arxiv.org/abs/2504.05640v1
- Date: Tue, 08 Apr 2025 03:35:09 GMT
- Title: CTI-Unet: Cascaded Threshold Integration for Improved U-Net Segmentation of Pathology Images
- Authors: Mingyang Zhu, Yuqiu Liang, Jiacheng Wang,
- Abstract summary: Chronic kidney disease (CKD) is a growing global health concern, necessitating precise and efficient image analysis to aid diagnosis and treatment planning.<n>This paper proposes a novel textitd Threshold-Integrated U-Net (CTI-Unet) to overcome the limitations of single-threshold segmentation.
- Score: 4.223102602534721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chronic kidney disease (CKD) is a growing global health concern, necessitating precise and efficient image analysis to aid diagnosis and treatment planning. Automated segmentation of kidney pathology images plays a central role in facilitating clinical workflows, yet conventional segmentation models often require delicate threshold tuning. This paper proposes a novel \textit{Cascaded Threshold-Integrated U-Net (CTI-Unet)} to overcome the limitations of single-threshold segmentation. By sequentially integrating multiple thresholded outputs, our approach can reconcile noise suppression with the preservation of finer structural details. Experiments on the challenging KPIs2024 dataset demonstrate that CTI-Unet outperforms state-of-the-art architectures such as nnU-Net, Swin-Unet, and CE-Net, offering a robust and flexible framework for kidney pathology image segmentation.
Related papers
- CENet: Context Enhancement Network for Medical Image Segmentation [3.4690322157094573]
We propose the Context Enhancement Network (CENet), a novel segmentation framework featuring two key innovations.<n>First, the Dual Selective Enhancement Block (DSEB) integrated into skip connections enhances boundary details and improves the detection of smaller organs in a context-aware manner.<n>Second, the Context Feature Attention Module (CFAM) in the decoder employs a multi-scale design to maintain spatial integrity, reduce feature redundancy, and mitigate overly enhanced representations.
arXiv Detail & Related papers (2025-05-23T23:22:18Z) - Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation [29.37619692272332]
We propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators.<n>CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency.<n>We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets.
arXiv Detail & Related papers (2025-05-06T19:42:56Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.
We propose a novel continual learning-driven CT model that can segment complete anatomies.
Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - GAEI-UNet: Global Attention and Elastic Interaction U-Net for Vessel
Image Segmentation [0.0]
Vessel image segmentation plays a pivotal role in medical diagnostics, aiding in the early detection and treatment of vascular diseases.
We propose GAEI-UNet, a novel model that combines global attention and elastic interaction-based techniques.
By capturing the forces generated by misalignment between target and predicted shapes, our model effectively learns to preserve the correct topology of vessel networks.
arXiv Detail & Related papers (2023-08-16T13:10:32Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Net is a novel network for automatic COVID-19 lung infection segmentation from CT images.
BCS-Net follows an encoder-decoder architecture, and more designs focus on the decoder stage.
In each BCSR block, the attention-guided global context (AGGC) module is designed to learn the most valuable encoder features for decoder.
arXiv Detail & Related papers (2022-07-17T08:54:07Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Weakly-Supervised Universal Lesion Segmentation with Regional Level Set
Loss [16.80758525711538]
We present a novel weakly-supervised universal lesion segmentation method based on the High-Resolution Network (HRNet)
AHRNet provides advanced high-resolution deep image features by involving a decoder, dual-attention and scale attention mechanisms.
Our method achieves the best performance on the publicly large-scale DeepLesion dataset and a hold-out test set.
arXiv Detail & Related papers (2021-05-03T23:33:37Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.