Sugar-Coated Poison: Benign Generation Unlocks LLM Jailbreaking
- URL: http://arxiv.org/abs/2504.05652v1
- Date: Tue, 08 Apr 2025 03:57:09 GMT
- Title: Sugar-Coated Poison: Benign Generation Unlocks LLM Jailbreaking
- Authors: Yu-Hang Wu, Yu-Jie Xiong, Jie-Zhang,
- Abstract summary: We reveal a vulnerability in large language models (LLMs), which we term Defense Threshold Decay (DTD)<n>As the model generates substantial benign content, its attention weights shift from the input to prior output, making it more susceptible to jailbreak attacks.<n>To mitigate such attacks, we introduce a simple yet effective defense strategy, POSD, which significantly reduces jailbreak success rates.
- Score: 13.939357884952154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have become increasingly integral to a wide range of applications. However, they still remain the threat of jailbreak attacks, where attackers manipulate designed prompts to make the models elicit malicious outputs. Analyzing jailbreak methods can help us delve into the weakness of LLMs and improve it. In this paper, We reveal a vulnerability in large language models (LLMs), which we term Defense Threshold Decay (DTD), by analyzing the attention weights of the model's output on input and subsequent output on prior output: as the model generates substantial benign content, its attention weights shift from the input to prior output, making it more susceptible to jailbreak attacks. To demonstrate the exploitability of DTD, we propose a novel jailbreak attack method, Sugar-Coated Poison (SCP), which induces the model to generate substantial benign content through benign input and adversarial reasoning, subsequently producing malicious content. To mitigate such attacks, we introduce a simple yet effective defense strategy, POSD, which significantly reduces jailbreak success rates while preserving the model's generalization capabilities.
Related papers
- Prefill-Based Jailbreak: A Novel Approach of Bypassing LLM Safety Boundary [2.4329261266984346]
Large Language Models (LLMs) are designed to generate helpful and safe content.
adversarial attacks, commonly referred to as jailbreak, can bypass their safety protocols.
We introduce a novel jailbreak attack method that leverages the prefilling feature of LLMs.
arXiv Detail & Related papers (2025-04-28T07:38:43Z) - DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
We introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs.
Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks.
During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens.
arXiv Detail & Related papers (2025-04-18T09:02:12Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, Multimodal Large Language Models (MLLMs) remain vulnerable to jailbreak attacks.<n>We propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
In this paper, we introduce a novel jailbreak method, which induces large language models (LLMs) to produce harmful content.<n>By injecting jailbreak information into user prompts, SIJ successfully induces the model to output harmful content.<n>We propose a simple defense method called Self-Reminder-Key to counter SIJ and demonstrate its effectiveness.
arXiv Detail & Related papers (2024-11-03T13:36:34Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.<n>It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.<n>Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
We propose a plug-and-play and easy-to-deploy jailbreak defense framework, namely Prefix Guidance (PG)
PG guides the model to identify harmful prompts by directly setting the first few tokens of the model's output.
We demonstrate the effectiveness of PG across three models and five attack methods.
arXiv Detail & Related papers (2024-08-15T14:51:32Z) - Poisoned LangChain: Jailbreak LLMs by LangChain [9.658883589561915]
We propose the concept of indirect jailbreak and achieve Retrieval-Augmented Generation via LangChain.
We tested this method on six different large language models across three major categories of jailbreak issues.
arXiv Detail & Related papers (2024-06-26T07:21:02Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.