論文の概要: AI analysis of medical images at scale as a health disparities probe: a feasibility demonstration using chest radiographs
- arxiv url: http://arxiv.org/abs/2504.05990v1
- Date: Tue, 08 Apr 2025 12:53:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:49.901753
- Title: AI analysis of medical images at scale as a health disparities probe: a feasibility demonstration using chest radiographs
- Title(参考訳): 健康格差調査としての大規模医療画像のAI分析-胸部X線写真を用いた実現可能性実証
- Authors: Heather M. Whitney, Hui Li, Karen Drukker, Elbert Huang, Maryellen L. Giger,
- Abstract要約: 健康の社会的決定因子(英: Social Determinant of Health, SDOH)は、健康格差に関連する可能性のある領域である。
本研究では,医療画像から自動的に抽出される定量的指標を,健康格差指数計算への入力として利用するパイプラインを開発した。
医療画像の大規模AI分析は、健康格差研究のための新しいデータソースのプローブとして機能する。
- 参考スコア(独自算出の注目度): 1.8351424954311537
- License:
- Abstract: Health disparities (differences in non-genetic conditions that influence health) can be associated with differences in burden of disease by groups within a population. Social determinants of health (SDOH) are domains such as health care access, dietary access, and economics frequently studied for potential association with health disparities. Evaluating SDOH-related phenotypes using routine medical images as data sources may enhance health disparities research. We developed a pipeline for using quantitative measures automatically extracted from medical images as inputs into health disparities index calculations. Our study focused on the use case of two SDOH demographic correlates (sex and race) and data extracted from chest radiographs of 1,571 unique patients. The likelihood of severe disease within the lung parenchyma from each image type, measured using an established deep learning model, was merged into a single numerical image-based phenotype for each patient. Patients were then separated into phenogroups by unsupervised clustering of the image-based phenotypes. The health rate for each phenogroup was defined as the median image-based phenotype for each SDOH used as inputs to four imaging-derived health disparities indices (iHDIs): one absolute measure (between-group variance) and three relative measures (index of disparity, Theil index, and mean log deviation). The iHDI measures demonstrated feasible values for each SDOH demographic correlate, showing potential for medical images to serve as a novel probe for health disparities. Large-scale AI analysis of medical images can serve as a probe for a novel data source for health disparities research.
- Abstract(参考訳): 健康格差(健康に影響を与える非遺伝的な条件の違い)は、集団内の集団による病気の重荷の差と関連付けられる。
健康の社会的決定因子(英: Social Determinant of Health, SDOH)は、医療アクセス、食事アクセス、健康格差との関連性について頻繁に研究される分野である。
日常的な医療画像を用いたSDOH関連表現型の評価は、健康格差の研究を促進する可能性がある。
本研究では,医療画像から自動的に抽出される定量的指標を,健康格差指数計算への入力として利用するパイプラインを開発した。
本研究は,2つのSDOH人口統計学的相関(性と人種)と,1,571例の胸部X線写真から抽出したデータについて検討した。
確立された深層学習モデルを用いて測定した各画像型から肺気管内の重篤な疾患の可能性を,各患者に対して1つの数値的画像ベース表現型にマージした。
その後、画像に基づく表現型を教師なしクラスタリングすることで、患者を表現群に分けた。
各表現群の健康度は、画像由来の4つの健康格差指標(iHDIs)の入力として用いられるSDOHの中央値の画像ベース表現型として定義され、絶対値(群間差)と相対値(相違指数、Theil指数、平均ログ偏差)の3つの指標が与えられた。
iHDI測定は、SDOHの人口統計値の関連性を実証し、医療画像が健康格差の新しいプローブとして機能する可能性を示した。
医療画像の大規模AI分析は、健康格差研究のための新しいデータソースのプローブとして機能する。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Integrating Social Determinants of Health into Knowledge Graphs: Evaluating Prediction Bias and Fairness in Healthcare [47.23120247002356]
健康の社会的決定因子(SDoH)は、患者の健康結果において重要な役割を担っているが、そのバイオメディカル知識グラフへの統合は未解明のままである。
本研究では,MIMIC-IIIデータセットとPrimeKGを用いて,SDoHに富んだ知識グラフを構築することにより,このギャップを解消する。
論文 参考訳(メタデータ) (2024-11-29T20:35:01Z) - FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - FedMedICL: Towards Holistic Evaluation of Distribution Shifts in Federated Medical Imaging [68.6715007665896]
FedMedICLは統合されたフレームワークであり、フェデレートされた医療画像の課題を全体評価するためのベンチマークである。
6種類の医用画像データセットについて,いくつかの一般的な手法を総合的に評価した。
単純なバッチ分散手法はFedMedICL実験全体の平均性能において,高度な手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-07-11T19:12:23Z) - On the notion of Hallucinations from the lens of Bias and Validity in
Synthetic CXR Images [0.35998666903987897]
拡散モデルのような生成モデルは、データ品質と臨床情報の格差を軽減することを目的としている。
スタンフォード大学の研究者たちは、医療画像データ拡張のための微調整された安定拡散モデル(RoentGen)の有用性を探求した。
我々はRoentGenを利用してChest-XRay(CXR)画像を生成し、バイアス、妥当性、幻覚の評価を行った。
論文 参考訳(メタデータ) (2023-12-12T04:41:20Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Mitigating Health Disparities in EHR via Deconfounder [5.511343163506091]
我々は、医療データセットの格差問題に対処する新しいフレームワーク、Parity Medical Deconfounder(PriMeD)を提案する。
PriMeDはCVAE(Conditional Variational Autoencoder)を採用して、観測データに対する潜伏要因(代替共同設立者)を学習する。
論文 参考訳(メタデータ) (2022-10-28T05:16:50Z) - HealthyGAN: Learning from Unannotated Medical Images to Detect Anomalies
Associated with Human Disease [13.827062843105365]
現在の医療画像学における典型的な手法は、健康な被験者のみから診断モデルを導出することに集中している。
HealthyGANは、混合データセットから正常な画像のみに変換することを学習する。
1方向であるHealthyGANは、既存の未ペア画像から画像への変換方法のサイクル一貫性の要求を緩和する。
論文 参考訳(メタデータ) (2022-09-05T08:10:52Z) - RadFusion: Benchmarking Performance and Fairness for Multimodal
Pulmonary Embolism Detection from CT and EHR [14.586822005217485]
肺塞栓症と診断されたEHRデータとCTを併用した1794例のベンチマークデータセットであるRadFusionを報告する。
以上の結果から,画像とEHRデータの統合により,集団間での正の正の比率に大きな差が生じることなく,分類性能が向上することが示唆された。
論文 参考訳(メタデータ) (2021-11-23T06:10:07Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。