論文の概要: Integrating Social Determinants of Health into Knowledge Graphs: Evaluating Prediction Bias and Fairness in Healthcare
- arxiv url: http://arxiv.org/abs/2412.00245v1
- Date: Fri, 29 Nov 2024 20:35:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:46.602465
- Title: Integrating Social Determinants of Health into Knowledge Graphs: Evaluating Prediction Bias and Fairness in Healthcare
- Title(参考訳): 健康の社会的要因を知識グラフに統合する:医療における予測バイアスと公正性の評価
- Authors: Tianqi Shang, Weiqing He, Tianlong Chen, Ying Ding, Huanmei Wu, Kaixiong Zhou, Li Shen,
- Abstract要約: 健康の社会的決定因子(SDoH)は、患者の健康結果において重要な役割を担っているが、そのバイオメディカル知識グラフへの統合は未解明のままである。
本研究では,MIMIC-IIIデータセットとPrimeKGを用いて,SDoHに富んだ知識グラフを構築することにより,このギャップを解消する。
- 参考スコア(独自算出の注目度): 47.23120247002356
- License:
- Abstract: Social determinants of health (SDoH) play a crucial role in patient health outcomes, yet their integration into biomedical knowledge graphs remains underexplored. This study addresses this gap by constructing an SDoH-enriched knowledge graph using the MIMIC-III dataset and PrimeKG. We introduce a novel fairness formulation for graph embeddings, focusing on invariance with respect to sensitive SDoH information. Via employing a heterogeneous-GCN model for drug-disease link prediction, we detect biases related to various SDoH factors. To mitigate these biases, we propose a post-processing method that strategically reweights edges connected to SDoHs, balancing their influence on graph representations. This approach represents one of the first comprehensive investigations into fairness issues within biomedical knowledge graphs incorporating SDoH. Our work not only highlights the importance of considering SDoH in medical informatics but also provides a concrete method for reducing SDoH-related biases in link prediction tasks, paving the way for more equitable healthcare recommendations. Our code is available at \url{https://github.com/hwq0726/SDoH-KG}.
- Abstract(参考訳): 健康の社会的決定因子(SDoH)は、患者の健康結果において重要な役割を担っているが、そのバイオメディカル知識グラフへの統合は未解明のままである。
本研究では,MIMIC-IIIデータセットとPrimeKGを用いて,SDoHに富んだ知識グラフを構築することにより,このギャップを解消する。
グラフ埋め込みのための新しいフェアネス定式化を導入し, センシティブなSDoH情報に対する不変性に着目した。
薬物放出リンク予測にヘテロジニアスGCNモデルを用いることにより,種々のSDoH因子に関するバイアスを検出する。
これらのバイアスを軽減するために,SDoHと結びついたエッジを戦略的に重み付けし,グラフ表現への影響を均衡させるポストプロセッシング手法を提案する。
このアプローチは、SDoHを取り入れたバイオメディカル知識グラフにおける公平性に関する最初の包括的な研究の1つである。
我々の研究は、医療情報学におけるSDoHを考えることの重要性を強調するだけでなく、リンク予測タスクにおけるSDoH関連バイアスを減らすための具体的な方法を提供し、より公平な医療レコメンデーションの道を開いた。
我々のコードは \url{https://github.com/hwq0726/SDoH-KG} で入手できる。
関連論文リスト
- DualMAR: Medical-Augmented Representation from Dual-Expertise Perspectives [20.369746122143063]
本研究では,個人観測データと公開知識ベースによる予測タスクを強化するフレームワークであるDualMARを提案する。
極空間上の座標の取得と角化により、DualMARはKGからのリッチな階層的およびセマンティックな埋め込みに基づく正確な予測を可能にする。
論文 参考訳(メタデータ) (2024-10-25T20:25:22Z) - Leveraging Social Determinants of Health in Alzheimer's Research Using LLM-Augmented Literature Mining and Knowledge Graphs [33.755845172595365]
成長する証拠は、社会的健康決定因子(SDoH)がアルツハイマー病(AD)と関連する認知症を発症する個人のリスクに影響を与えることを示唆している。
本研究は、SDoHの知識を広範囲にわたる文献から抽出し、AD関連生物学的実体と統合するための、新しい自動化された枠組みを提案する。
本フレームワークは,ADにおける知識発見の促進を約束し,他のSDoH関連研究領域に一般化することができる。
論文 参考訳(メタデータ) (2024-10-04T21:39:30Z) - HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks [2.2026317523029193]
HealthGATは、EHRから埋め込みを生成するグラフアテンションネットワークフレームワークである。
本モデルでは,医療コードへの埋め込みを反復的に洗練し,EHRデータ解析の改善を実現している。
本モデルでは,ノード分類や,可読度予測や診断分類などの下流タスクにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-26T22:17:01Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises [52.31710895034573]
この研究は、医療知識グラフ(HKG)の最初の包括的なレビューを提供する。
HKG構築のためのパイプラインと重要なテクニックを要約し、一般的な利用方法も示す。
アプリケーションレベルでは、さまざまなヘルスドメインにわたるHKGの正常な統合を検討します。
論文 参考訳(メタデータ) (2023-06-07T21:51:56Z) - Systematic Design and Evaluation of Social Determinants of Health
Ontology (SDoHO) [19.90090257979115]
健康の社会的決定因子(SDoH)は、健康の結果と幸福に重大な影響を及ぼす。
本稿では,SDoH の基本的な因子とその関係を標準化し,測定可能な方法で表現する SDoH オントロジー (SDoHO) を提案する。
論文 参考訳(メタデータ) (2022-12-04T22:23:30Z) - Label Dependent Attention Model for Disease Risk Prediction Using
Multimodal Electronic Health Records [8.854691034104071]
疾病リスク予測は、現代医療の分野で注目を集めている。
リスク予測にAIモデルを適用する上での課題のひとつは、解釈可能な証拠を生成することだ。
単語とラベルを共同で埋め込む手法を提案する。
論文 参考訳(メタデータ) (2022-01-18T07:21:20Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
非均質な類似度グラフニューラルネットワーク(HSGNN)を提案し、新しい異種GNNでEHRを分析します。
フレームワークは2つの部分から構成される: 1つは前処理方式で、もう1つはエンドツーエンドのGNNである。
GNNは全ての同質グラフを入力として取り、それら全てを1つのグラフに融合して予測する。
論文 参考訳(メタデータ) (2021-01-17T23:14:29Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。