Leveraging Axis-Aligned Subspaces for High-Dimensional Bayesian Optimization with Group Testing
- URL: http://arxiv.org/abs/2504.06111v1
- Date: Tue, 08 Apr 2025 15:00:15 GMT
- Title: Leveraging Axis-Aligned Subspaces for High-Dimensional Bayesian Optimization with Group Testing
- Authors: Erik Hellsten, Carl Hvarfner, Leonard Papenmeier, Luigi Nardi,
- Abstract summary: We propose a group testing ( GT) approach to identify active variables to facilitate efficient optimization in high-dimensional domains.<n>We extend the well-established GT theory to functions over continuous domains.<n>In the second phase, GTBO guides optimization by placing more importance on the active dimensions.
- Score: 6.5202942559480075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization (BO ) is an effective method for optimizing expensive-to-evaluate black-box functions. While high-dimensional problems can be particularly challenging, due to the multitude of parameter choices and the potentially high number of data points required to fit the model, this limitation can be addressed if the problem satisfies simplifying assumptions. Axis-aligned subspace approaches, where few dimensions have a significant impact on the objective, motivated several algorithms for high-dimensional BO . However, the validity of this assumption is rarely verified, and the assumption is rarely exploited to its full extent. We propose a group testing ( GT) approach to identify active variables to facilitate efficient optimization in these domains. The proposed algorithm, Group Testing Bayesian Optimization (GTBO), first runs a testing phase where groups of variables are systematically selected and tested on whether they influence the objective, then terminates once active dimensions are identified. To that end, we extend the well-established GT theory to functions over continuous domains. In the second phase, GTBO guides optimization by placing more importance on the active dimensions. By leveraging the axis-aligned subspace assumption, GTBO outperforms state-of-the-art methods on benchmarks satisfying the assumption of axis-aligned subspaces, while offering improved interpretability.
Related papers
- Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
This research presents a method to meet requirements through the minimization objective function of the RPM algorithm.
A branch-and-bound (BnB) algorithm is devised, which solely branches over the parameters, thereby boosting convergence rate.
Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, when compared with prevailing state-of-the-art transformations.
arXiv Detail & Related papers (2024-05-14T13:28:57Z) - An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
We propose a two-step optimization framework to extend BO to high-dimensional settings.
Our algorithm offers the flexibility to operate these steps either concurrently or in sequence.
Numerical experiments validate the efficacy of our method in challenging scenarios.
arXiv Detail & Related papers (2024-03-08T16:21:08Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - High-dimensional Bayesian Optimization with Group Testing [7.12295305987761]
We propose a group testing approach to identify active variables to facilitate efficient optimization in high-dimensional domains.
The proposed algorithm, Group Testing Bayesian Optimization (GTBO), first runs a testing phase where groups of variables are systematically selected and tested.
In the second phase, GTBO guides optimization by placing more importance on the active dimensions.
arXiv Detail & Related papers (2023-10-05T12:52:27Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
We propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors.
We show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces.
We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs.
arXiv Detail & Related papers (2023-02-14T18:55:21Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.<n>We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces [14.03847432040056]
We argue that a surrogate model defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony.
We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function.
arXiv Detail & Related papers (2021-02-27T23:06:24Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Scalable Constrained Bayesian Optimization [10.820024633762596]
The global optimization of a high-dimensional black-box function under black-box constraints is a pervasive task in machine learning, control, and the scientific community.
We propose the scalable constrained Bayesian optimization (SCBO) algorithm that overcomes the above challenges and pushes the state-the-art.
arXiv Detail & Related papers (2020-02-20T01:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.