Continuous-variable spatio-spectral quantum networks in nonlinear photonic lattices
- URL: http://arxiv.org/abs/2504.06229v1
- Date: Tue, 08 Apr 2025 17:24:00 GMT
- Title: Continuous-variable spatio-spectral quantum networks in nonlinear photonic lattices
- Authors: Natalia Costas, Nadia Belabas, David Barral,
- Abstract summary: Multiplexing information in different degrees of freedom and use of integrated and fiber-optic components are natural solutions to the scalability in optical quantum communications and computing.<n>For bulk-optics systems, where size, cost, stability, and reliability are factors, this remains either impractical or highly challenging to implement.<n>We present a framework to engineer continuous entanglement produced through nondegenerate spontaneous parametric down-conversion in chi(2) nonlinear photonic lattices in spatial and spectral degrees of freedom.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiplexing information in different degrees of freedom and use of integrated and fiber-optic components are natural solutions to the scalability bottleneck in optical quantum communications and computing. However, for bulk-optics systems, where size, cost, stability, and reliability are factors, this remains either impractical or highly challenging to implement. In this paper we present a framework to engineer continuous-variable entanglement produced through nondegenerate spontaneous parametric down-conversion in \chi^(2) nonlinear photonic lattices in spatial and spectral degrees of freedom that can solve the scalability challenge. We show how spatio-spectral pump shaping produce cluster states that are naturally distributable in quantum communication networks and a resource for measurement-based quantum computing.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Dissipation-induced Quantum Homogenization for Temporal Information Processing [44.99833362998488]
Quantum reservoirs have great potential as they utilize the complex real-time dissipative dynamics of quantum systems for information processing and target time-series generation without precise control or fine-tuning of the Hamiltonian parameters.<n>We propose the disordered quantum homogenizer as an alternative platform, and prove it satisfies the necessary and sufficient conditions - stability and contractivity - of the reservoir dynamics.<n>The results indicate that the quantum homogenization protocol, physically implementable as either nuclear magnetic resonance ensemble or a photonic system, can potentially function as a reservoir computer.
arXiv Detail & Related papers (2024-12-13T09:05:41Z) - On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays [0.0]
We demonstrate a compact source of path-entangled photon pairs based on parametric down-conversion in semiconductor nonlinear waveguides arrays.<n>We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.<n>This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator [6.098636361994834]
We introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors.
We show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
arXiv Detail & Related papers (2024-02-29T16:22:13Z) - Multipartite spatial entanglement generated by concurrent nonlinear
processes [91.3755431537592]
Continuous variables multipartite entanglement is a key resource for quantum technologies.
This work considers the multipartite entanglement generated in separated spatial modes of the same light beam by three different parametric sources.
arXiv Detail & Related papers (2021-11-09T17:15:13Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Statistical limits for quantum networks with semiconductor entangled
photon sources [1.44854099261305]
We explore the statistical limits for entanglement swapping with sources of polarization-entangled photons from the commonly used biexciton-exciton cascade.
We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks.
arXiv Detail & Related papers (2021-09-14T14:57:50Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Boosting photonic quantum computation with moderate nonlinearity [0.0]
Photonic measurement-based quantum computation (MBQC) is a promising route towards fault-tolerant universal quantum computing.
A central challenge in this effort is the huge overhead in the resources required for the construction of large photonic clusters.
Here we explore the prospects of using moderate nonlinearity to boost photonic quantum computing and significantly reduce its resources overhead.
arXiv Detail & Related papers (2020-11-12T15:53:34Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.