論文の概要: Transfer between Modalities with MetaQueries
- arxiv url: http://arxiv.org/abs/2504.06256v1
- Date: Tue, 08 Apr 2025 17:58:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:29:29.783676
- Title: Transfer between Modalities with MetaQueries
- Title(参考訳): MetaQueriesによるモダリティの移動
- Authors: Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang Wang, Zhiyang Xu, Jiuhai Chen, Kunpeng Li, Felix Juefei-Xu, Ji Hou, Saining Xie,
- Abstract要約: 自己回帰型マルチモーダルLLMと拡散モデルの間の効率的なインターフェースとして機能する,学習可能なクエリセットであるMetaQueriesを紹介する。
本手法は,2つの画像キャプチャデータと標準拡散目標のみを必要とする訓練を簡略化する。
本手法はフレキシブルであり,画像編集や主観的生成などの高度なアプリケーションに対して容易に命令調整を行うことができる。
- 参考スコア(独自算出の注目度): 44.57406292414526
- License:
- Abstract: Unified multimodal models aim to integrate understanding (text output) and generation (pixel output), but aligning these different modalities within a single architecture often demands complex training recipes and careful data balancing. We introduce MetaQueries, a set of learnable queries that act as an efficient interface between autoregressive multimodal LLMs (MLLMs) and diffusion models. MetaQueries connects the MLLM's latents to the diffusion decoder, enabling knowledge-augmented image generation by leveraging the MLLM's deep understanding and reasoning capabilities. Our method simplifies training, requiring only paired image-caption data and standard diffusion objectives. Notably, this transfer is effective even when the MLLM backbone remains frozen, thereby preserving its state-of-the-art multimodal understanding capabilities while achieving strong generative performance. Additionally, our method is flexible and can be easily instruction-tuned for advanced applications such as image editing and subject-driven generation.
- Abstract(参考訳): 統一されたマルチモーダルモデルは、理解(テキスト出力)と生成(ピクセル出力)を統合することを目的としているが、これらの異なるモダリティを単一のアーキテクチャ内で整列させるには、複雑なトレーニングレシピと注意深いデータバランスが必要であることが多い。
本稿では,MLLM(autoregressive multimodal LLM)と拡散モデルの間の効率的なインターフェースとして機能する,学習可能なクエリセットであるMetaQueriesを紹介する。
MetaQueriesはMLLMの潜伏者を拡散デコーダに接続し、MLLMの深い理解と推論能力を活用することで知識強化された画像生成を可能にする。
本手法は,2つの画像キャプチャデータと標準拡散目標のみを必要とする訓練を簡略化する。
特に、MLLMバックボーンが凍結されたままでも、この転送は有効であり、これにより、強力な生成性能を保ちながら、最先端のマルチモーダル理解能力を保っている。
さらに,本手法はフレキシブルであり,画像編集や主観駆動生成といった先進的なアプリケーションでも容易に命令調整が可能である。
関連論文リスト
- SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
画像の理解と生成の両方が可能なシンプルだが強力なエンコーダのないMLLMであるSynerGen-VLを提案する。
トークンの折り畳み機構と,高分解能画像理解を効果的に支援するビジョンエキスパートベースのプログレッシブアライメント事前学習戦略を導入する。
コードとモデルはリリースされます。
論文 参考訳(メタデータ) (2024-12-12T18:59:26Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - From Image to Video, what do we need in multimodal LLMs? [19.85928004619801]
MLLM(Multimodal Large Language Models)は、マルチモーダル情報を理解する上で重要な機能を示す。
画像LLMからの映像LLMのための資源効率の高い開発パイプラインRED-VILLMを提案する。
我々のアプローチは、よりコスト効率が高くスケーラブルなマルチモーダルモデルの進歩の可能性を強調します。
論文 参考訳(メタデータ) (2024-04-18T02:43:37Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
LLMを事前訓練された視覚モデルに組み込んだマルチモーダル大規模言語モデル(MLLM)は、近年、多様な視覚言語タスクにまたがる印象的なパフォーマンスを実証している。
しかし、複数の画像を含む文脈を理解するには不十分である。
本稿では,2つのフェーズ・パラダイムであるブラウズ・アンド・集中型を提案し,より深いマルチモーダルコンテキスト融合を実現する。
論文 参考訳(メタデータ) (2024-02-19T14:59:07Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMAは、ビデオ推論のための一般化可能、高効率、モジュラリティ融合フレームワークである。
本稿では,軽量核融合モジュールとモーダリティ・シークエンシャル・トレーニング・ストラテジーによって支援された,新しいプログレッシブ・マルチモーダル・フュージョン設計を提案する。
ビデオQA や Video-Audio/3D/Touch/Thermal QA を含む7つのビデオ言語推論タスクについて検証を行った。
論文 参考訳(メタデータ) (2024-02-08T18:27:22Z) - ModaVerse: Efficiently Transforming Modalities with LLMs [25.49713745405194]
ModaVerseはマルチモーダルな大規模言語モデルで、様々なモダリティにまたがってコンテンツを解釈・変換できる。
自然言語のレベルで直接動作する新しい入出力(I/O)アライメント機構を提案する。
論文 参考訳(メタデータ) (2024-01-12T06:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。