Physical spline for denoising object trajectory data by combining splines, ML feature regression and model knowledge
- URL: http://arxiv.org/abs/2504.06404v1
- Date: Tue, 08 Apr 2025 19:53:57 GMT
- Title: Physical spline for denoising object trajectory data by combining splines, ML feature regression and model knowledge
- Authors: Jonas Torzewski,
- Abstract summary: This article presents a method for estimating the dynamic driving states (position, velocity, acceleration and heading) from noisy measurement data.<n>The proposed approach is effective with both complete and partial observations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents a method for estimating the dynamic driving states (position, velocity, acceleration and heading) from noisy measurement data. The proposed approach is effective with both complete and partial observations, producing refined trajectory signals with kinematic consistency, ensuring that velocity is the integral of acceleration and position is the integral of velocity. Additionally, the method accounts for the constraint that vehicles can only move in the direction of their orientation. The method is implemented as a configurable python library that also enables trajectory estimation solely based on position data. Regularization is applied to prevent extreme state variations. A key application is enhancing recorded trajectory data for use as reference inputs in machine learning models. At the end, the article presents the results of the method along with a comparison to ground truth data.
Related papers
- Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction [16.532357621144342]
We propose a self-supervised pedestrian trajectory prediction framework.<n>We leverage velocity and acceleration information to enhance position prediction.<n>We conduct experiments on the ETH-UCY and Stanford Drone datasets.
arXiv Detail & Related papers (2025-03-31T16:17:45Z) - Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
This paper presents an event-based framework for tracking any point.<n>It tackles the challenges posed by spatial sparsity and motion sensitivity in events.<n>It achieves 150% faster processing with competitive model parameters.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-05-21T00:08:06Z) - Random Matrix Based Extended Target Tracking with Orientation: A New
Model and Inference [0.0]
We propose a novel extended target tracking algorithm which is capable of representing the extent of dynamic objects as an ellipsoid with a time-varying orientation angle.
A diagonal positive semi-definite matrix is defined to model objects' extent within the random matrix framework.
It is not possible to find a closed-form analytical expression for the true posterior because of the absence of conjugacy.
arXiv Detail & Related papers (2020-10-17T16:33:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.