Data-driven Fuzzy Control for Time-Optimal Aggressive Trajectory Following
- URL: http://arxiv.org/abs/2504.06500v1
- Date: Wed, 09 Apr 2025 00:06:15 GMT
- Title: Data-driven Fuzzy Control for Time-Optimal Aggressive Trajectory Following
- Authors: August Phelps, Juan Augusto Paredes Salazar, Ankit Goel,
- Abstract summary: This work presents a data-driven fuzzy controller framework that is guided by a time-optimal trajectory for multicopter tracking problems.<n>A fuzzy controller consisting of a stabilizing controller near hover conditions and an autoregressive moving average (ARMA) controller, trained to mimic the time-optimal aggressive trajectory, is constructed using the Takagi-Sugeno fuzzy framework.
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimal trajectories that minimize a user-defined cost function in dynamic systems require the solution of a two-point boundary value problem. The optimization process yields an optimal control sequence that depends on the initial conditions and system parameters. However, the optimal sequence may result in undesirable behavior if the system's initial conditions and parameters are erroneous. This work presents a data-driven fuzzy controller synthesis framework that is guided by a time-optimal trajectory for multicopter tracking problems. In particular, we consider an aggressive maneuver consisting of a mid-air flip and generate a time-optimal trajectory by numerically solving the two-point boundary value problem. A fuzzy controller consisting of a stabilizing controller near hover conditions and an autoregressive moving average (ARMA) controller, trained to mimic the time-optimal aggressive trajectory, is constructed using the Takagi-Sugeno fuzzy framework.
Related papers
- Towards Robust Spacecraft Trajectory Optimization via Transformers [17.073280827888226]
We develop an autonomous generative model to solve non- optimal control problems in real-time.<n>We extend the capabilities of ART to address robust chance-constrained optimal control problems.<n>This work marks an initial step toward the reliable deployment of AI-driven solutions in safety-critical autonomous systems such as spacecraft.
arXiv Detail & Related papers (2024-10-08T00:58:42Z) - Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100.
The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers.
arXiv Detail & Related papers (2024-10-03T17:50:19Z) - Real-Time Adaptive Safety-Critical Control with Gaussian Processes in
High-Order Uncertain Models [14.790031018404942]
This paper presents an adaptive online learning framework for systems with uncertain parameters.
We first integrate a forgetting factor to refine a variational sparse GP algorithm.
In the second phase, we propose a safety filter based on high-order control barrier functions.
arXiv Detail & Related papers (2024-02-29T08:25:32Z) - Regret-optimal Estimation and Control [52.28457815067461]
We show that the regret-optimal estimator and regret-optimal controller can be derived in state-space form.
We propose regret-optimal analogs of Model-Predictive Control (MPC) and the Extended KalmanFilter (EKF) for systems with nonlinear dynamics.
arXiv Detail & Related papers (2021-06-22T23:14:21Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
The PID is illustrated on a two-input two-output balance system.
It integrates a self-adjusting nonlinear threshold with a neural network to compromise between the desired transient and steady state characteristics.
The neural network is trained upon optimizing a weighted-derivative like objective cost function.
arXiv Detail & Related papers (2021-04-01T02:00:20Z) - Safe and Efficient Model-free Adaptive Control via Bayesian Optimization [39.962395119933596]
We propose a purely data-driven, model-free approach for adaptive control.
tuning low-level controllers based solely on system data raises concerns on the underlying algorithm safety and computational performance.
We numerically demonstrate for several types of disturbances that our approach is sample efficient, outperforms constrained Bayesian optimization in terms of safety, and achieves the performance optima computed by grid evaluation.
arXiv Detail & Related papers (2021-01-19T19:15:00Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Improper Learning for Non-Stochastic Control [78.65807250350755]
We consider the problem of controlling a possibly unknown linear dynamical system with adversarial perturbations, adversarially chosen convex loss functions, and partially observed states.
Applying online descent to this parametrization yields a new controller which attains sublinear regret vs. a large class of closed-loop policies.
Our bounds are the first in the non-stochastic control setting that compete with emphall stabilizing linear dynamical controllers.
arXiv Detail & Related papers (2020-01-25T02:12:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.