論文の概要: Understanding Users' Security and Privacy Concerns and Attitudes Towards Conversational AI Platforms
- arxiv url: http://arxiv.org/abs/2504.06552v1
- Date: Wed, 09 Apr 2025 03:22:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:40.873747
- Title: Understanding Users' Security and Privacy Concerns and Attitudes Towards Conversational AI Platforms
- Title(参考訳): 会話型AIプラットフォームに向けたユーザのセキュリティとプライバシの懸念と態度を理解する
- Authors: Mutahar Ali, Arjun Arunasalam, Habiba Farrukh,
- Abstract要約: r/ChatGPT Redditコミュニティから250万以上のユーザ投稿を大規模に分析して、ユーザのセキュリティとプライバシに関する懸念を理解する。
データライフサイクルの各ステージ(すなわち、収集、使用、保持など)にユーザが関心を持っていることが分かりました。
透明性を高め、データコントロールを改善し、ユーザの信頼と採用を高めるために、ユーザ、プラットフォーム、企業、および政策立案者にレコメンデーションを提供します。
- 参考スコア(独自算出の注目度): 3.789219860006095
- License:
- Abstract: The widespread adoption of conversational AI platforms has introduced new security and privacy risks. While these risks and their mitigation strategies have been extensively researched from a technical perspective, users' perceptions of these platforms' security and privacy remain largely unexplored. In this paper, we conduct a large-scale analysis of over 2.5M user posts from the r/ChatGPT Reddit community to understand users' security and privacy concerns and attitudes toward conversational AI platforms. Our qualitative analysis reveals that users are concerned about each stage of the data lifecycle (i.e., collection, usage, and retention). They seek mitigations for security vulnerabilities, compliance with privacy regulations, and greater transparency and control in data handling. We also find that users exhibit varied behaviors and preferences when interacting with these platforms. Some users proactively safeguard their data and adjust privacy settings, while others prioritize convenience over privacy risks, dismissing privacy concerns in favor of benefits, or feel resigned to inevitable data sharing. Through qualitative content and regression analysis, we discover that users' concerns evolve over time with the evolving AI landscape and are influenced by technological developments and major events. Based on our findings, we provide recommendations for users, platforms, enterprises, and policymakers to enhance transparency, improve data controls, and increase user trust and adoption.
- Abstract(参考訳): 会話型AIプラットフォームの普及により、新たなセキュリティとプライバシリスクが導入されている。
これらのリスクとその緩和戦略は技術的観点から広く研究されてきたが、これらのプラットフォームのセキュリティとプライバシに対するユーザの認識はほとんど解明されていないままである。
本稿では,r/ChatGPT Redditコミュニティから,ユーザのセキュリティやプライバシの懸念,会話型AIプラットフォームに対する態度を理解するために,250万以上のユーザ投稿を大規模に分析する。
我々の定性的分析は、ユーザがデータライフサイクルの各段階(すなわち、収集、使用、保持)について懸念していることを明らかにします。
彼らはセキュリティ上の脆弱性の軽減、プライバシー規制の遵守、データ処理における透明性とコントロールの向上を求めている。
また,これらのプラットフォームと対話する際には,ユーザの行動や嗜好も様々であることがわかった。
データを積極的に保護し、プライバシー設定を調整するユーザもいれば、プライバシー上のリスクよりも利便性を優先するユーザもいる。
定性的なコンテンツと回帰分析を通じて、ユーザの関心事は進化するAIの状況とともに時間とともに進化し、技術開発や主要なイベントの影響を受けます。
ユーザ,プラットフォーム,企業,政策立案者に対して,透明性の向上,データコントロールの改善,ユーザ信頼と採用の向上を推奨する。
関連論文リスト
- Navigating AI to Unpack Youth Privacy Concerns: An In-Depth Exploration and Systematic Review [0.0]
この体系的な文献レビューは、人工知能(AI)システムにおけるプライバシーに関する若いデジタル市民の認識、関心、期待について調査する。
データ抽出は、プライバシの懸念、データ共有のプラクティス、プライバシとユーティリティのバランス、AIの信頼要因、個人データのユーザコントロールを強化する戦略に焦点を当てている。
発見は、個人情報のコントロールの欠如、AIによるデータの誤用の可能性、データ漏洩や不正アクセスの恐れなど、若いユーザーの間で重要なプライバシー上の懸念を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-12-20T22:00:06Z) - The Illusion of Anonymity: Uncovering the Impact of User Actions on Privacy in Web3 Social Ecosystems [11.501563549824466]
本稿では,Web3ソーシャルプラットフォームにおけるユーザエンゲージメントと,それに伴うプライバシー問題との相違点について検討する。
我々は,人気を模したボグスアカウントの確立を含む,製造活動の広範な現象を精査する。
我々は、社会交流の複雑なウェブをナビゲートする、より厳格なプライバシー対策と倫理的プロトコルの緊急的必要性を強調します。
論文 参考訳(メタデータ) (2024-05-22T06:26:15Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Privacy Preservation in Artificial Intelligence and Extended Reality
(AI-XR) Metaverses: A Survey [3.0151762748441624]
メタバースは、個人が対話し、創造し、幅広い活動に参加することができる仮想宇宙を構想している。
メタバースにおけるプライバシーは、概念が進化し、没入的な仮想体験がより普及するにつれて、重要な関心事である。
ユーザを追跡するためのAIに依存していることから、将来のメタバースが直面するであろうさまざまなプライバシー上の課題について検討する。
論文 参考訳(メタデータ) (2023-09-19T11:56:12Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
この問題に対処するために、説明可能性がどのように役立つかを検討しました。
私たちはプライバシーの説明を作成し、エンドユーザの理由と特定のデータが必要な理由を明らかにするのに役立ちました。
我々の発見は、プライバシーの説明がソフトウェアシステムの信頼性を高めるための重要なステップであることを示している。
論文 参考訳(メタデータ) (2022-10-18T09:30:37Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - The Evolving Path of "the Right to Be Left Alone" - When Privacy Meets
Technology [0.0]
本稿では,プライバシエコシステムの新たなビジョンとして,プライバシの次元,関連するユーザの期待,プライバシ違反,変化要因を導入することを提案する。
プライバシー問題に取り組むための有望なアプローチは, (i) 効果的なプライバシメトリクスの識別, (ii) プライバシに準拠したアプリケーションを設計するためのフォーマルなツールの採用という,2つの方向に移行している,と私たちは信じています。
論文 参考訳(メタデータ) (2021-11-24T11:27:55Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z) - The Challenges and Impact of Privacy Policy Comprehension [0.0]
本稿では、避けられないシンプルなプライバシーポリシーのプライバシーフレンドリさを実験的に操作した。
参加者の半数は、この透明なプライバシーポリシーさえ誤解している。
このような落とし穴を緩和するため、私たちはインフォームドコンセントの品質を向上させる設計勧告を提示します。
論文 参考訳(メタデータ) (2020-05-18T14:16:48Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
データ保護法とプライバシーの権利が認められているにもかかわらず、個人情報の取引は「トレーディング・オイル」と同等のビジネスになっている。
オープンな対立は、データに対するビジネスの要求とプライバシーへの欲求の間に生じている。
プライバシを備えたパーソナル情報市場のビジョンを提案し,テストする。
論文 参考訳(メタデータ) (2020-05-13T13:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。