論文の概要: Navigating AI to Unpack Youth Privacy Concerns: An In-Depth Exploration and Systematic Review
- arxiv url: http://arxiv.org/abs/2412.16369v1
- Date: Fri, 20 Dec 2024 22:00:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:20.427157
- Title: Navigating AI to Unpack Youth Privacy Concerns: An In-Depth Exploration and Systematic Review
- Title(参考訳): 若者のプライバシに関する懸念を解き放つためにAIをナビゲートする - 詳細な調査とシステムレビュー
- Authors: Ajay Kumar Shrestha, Ankur Barthwal, Molly Campbell, Austin Shouli, Saad Syed, Sandhya Joshi, Julita Vassileva,
- Abstract要約: この体系的な文献レビューは、人工知能(AI)システムにおけるプライバシーに関する若いデジタル市民の認識、関心、期待について調査する。
データ抽出は、プライバシの懸念、データ共有のプラクティス、プライバシとユーティリティのバランス、AIの信頼要因、個人データのユーザコントロールを強化する戦略に焦点を当てている。
発見は、個人情報のコントロールの欠如、AIによるデータの誤用の可能性、データ漏洩や不正アクセスの恐れなど、若いユーザーの間で重要なプライバシー上の懸念を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This systematic literature review investigates perceptions, concerns, and expectations of young digital citizens regarding privacy in artificial intelligence (AI) systems, focusing on social media platforms, educational technology, gaming systems, and recommendation algorithms. Using a rigorous methodology, the review started with 2,000 papers, narrowed down to 552 after initial screening, and finally refined to 108 for detailed analysis. Data extraction focused on privacy concerns, data-sharing practices, the balance between privacy and utility, trust factors in AI, transparency expectations, and strategies to enhance user control over personal data. Findings reveal significant privacy concerns among young users, including a perceived lack of control over personal information, potential misuse of data by AI, and fears of data breaches and unauthorized access. These issues are worsened by unclear data collection practices and insufficient transparency in AI applications. The intention to share data is closely associated with perceived benefits and data protection assurances. The study also highlights the role of parental mediation and the need for comprehensive education on data privacy. Balancing privacy and utility in AI applications is crucial, as young digital citizens value personalized services but remain wary of privacy risks. Trust in AI is significantly influenced by transparency, reliability, predictable behavior, and clear communication about data usage. Strategies to improve user control over personal data include access to and correction of data, clear consent mechanisms, and robust data protection assurances. The review identifies research gaps and suggests future directions, such as longitudinal studies, multicultural comparisons, and the development of ethical AI frameworks.
- Abstract(参考訳): この体系的な文献レビューは、ソーシャルメディアプラットフォーム、教育技術、ゲームシステム、レコメンデーションアルゴリズムに焦点を当て、人工知能(AI)システムにおけるプライバシーに関する若いデジタル市民の認識、関心、期待について調査する。
厳格な手法を用いて、レビューは2000件の論文から始まり、最初のスクリーニング後に52件に縮小され、最終的に詳細な分析のために108件に改善された。
データ抽出は、プライバシの懸念、データ共有のプラクティス、プライバシとユーティリティのバランス、AIの信頼要因、透明性の期待、個人データのユーザコントロールを強化する戦略に重点を置いている。
発見は、個人情報のコントロールの欠如、AIによるデータの誤用の可能性、データ漏洩や不正アクセスの恐れなど、若いユーザーの間で重要なプライバシー上の懸念を浮き彫りにしている。
これらの問題は、不明瞭なデータ収集のプラクティスと、AIアプリケーションにおける透明性の欠如によって悪化している。
データを共有する意図は、認識された利益とデータ保護の保証と密接に関連している。
この研究はまた、親の仲裁の役割と、データのプライバシーに関する包括的教育の必要性を強調している。
若いデジタル市民がパーソナライズされたサービスを重視する一方で、プライバシのリスクに注意を払っているため、AIアプリケーションにおけるプライバシとユーティリティのバランスをとることが重要です。
AIへの信頼は、透明性、信頼性、予測可能な振る舞い、データ使用に関する明確なコミュニケーションに大きく影響されている。
個人データのユーザコントロールを改善するための戦略としては、データのアクセスと修正、明確な同意機構、堅牢なデータ保護保証などがある。
このレビューでは、縦断的研究、多文化比較、倫理的AIフレームワークの開発など、研究のギャップを特定し、今後の方向性を提案する。
関連論文リスト
- Ethical AI in Retail: Consumer Privacy and Fairness [0.0]
小売業における人工知能(AI)の採用は、業界を大きく変革させ、よりパーソナライズされたサービスと効率的な運用を可能にした。
しかし、AI技術の急速な実装は、特に消費者プライバシと公正性に関する倫理的懸念を提起する。
本研究の目的は、小売業におけるAIアプリケーションの倫理的課題を分析し、競争力を維持しながらAI技術を倫理的に実装する方法を探究し、倫理的AIプラクティスに関する推奨を提供することである。
論文 参考訳(メタデータ) (2024-10-20T12:00:14Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
本稿ではLynx.MDと共同で開発されたゲノム研究のためのプライバシ保護フレームワークを提案する。
このフレームワークは、重要なサイバーセキュリティとプライバシの課題に対処し、プライバシ保護によるゲノムデータの共有と分析を可能にする。
Lynx.MD内でのフレームワークの実装には、ゲノムデータをバイナリ形式に符号化し、制御された摂動技術を通じてノイズを適用することが含まれる。
論文 参考訳(メタデータ) (2024-07-12T05:43:13Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - AI-Driven Anonymization: Protecting Personal Data Privacy While
Leveraging Machine Learning [5.015409508372732]
本稿では、個人データのプライバシー保護と匿名化の促進を研究の中心的目的とする。
機械学習の差分プライバシー保護アルゴリズムを使用して、個人データのプライバシ保護と検出を実現する。
また、プライバシと個人データ保護に関連する機械学習の既存の課題に対処し、改善提案を提供し、データセットに影響を与える要因を分析して、タイムリーな個人データプライバシ検出と保護を可能にする。
論文 参考訳(メタデータ) (2024-02-27T04:12:25Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - Preserving The Safety And Confidentiality Of Data Mining Information In Health Care: A literature review [0.0]
PPDM技術は、膨大な量のデータから実行可能な洞察を抽出することを可能にする。
機密情報の開示は患者のプライバシーを侵害する。
本稿では,プライバシ保護機構,データ保護規制,緩和戦略に関する関連研究のレビューを行う。
論文 参考訳(メタデータ) (2023-10-30T05:32:15Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
データプライバシを保護するために設計された新しい手法は、慎重に精査する必要がある。
プライバシ保護の失敗は検出し難いが,プライバシ保護法を実装したシステムが攻撃された場合,破滅的な結果につながる可能性がある。
論文 参考訳(メタデータ) (2022-09-29T17:50:23Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。