論文の概要: Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models
- arxiv url: http://arxiv.org/abs/2504.06774v1
- Date: Wed, 09 Apr 2025 10:56:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 16:14:42.572414
- Title: Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models
- Title(参考訳): CFDシミュレーションを加速するための物理パターンに基づくハイブリッド機械学習モデル:自己回帰モデルに関する短いガイド
- Authors: Arindam Sengupta, Rodrigo Abadía-Heredia, Ashton Hetherington, José Miguel Pérez, Soledad Le Clainche,
- Abstract要約: 本研究では,Long Short-Term Memory (LSTM) アーキテクチャと高次特異値分解を革新的に統合し,流体力学における低次モデリング(ROM)の複雑さに対処する。
この手法は、2次元および3次元のシリンダー流(2次元および3次元)を含む数値的および実験的なデータセットで試験される。
その結果、HOSVDは、異なるエラーメトリクスを用いて証明されたように、すべてのテストシナリオでSVDより優れていることが示された。
- 参考スコア(独自算出の注目度): 3.780691701083858
- License:
- Abstract: Accurate modeling of the complex dynamics of fluid flows is a fundamental challenge in computational physics and engineering. This study presents an innovative integration of High-Order Singular Value Decomposition (HOSVD) with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics. HOSVD improves the dimensionality reduction process by preserving multidimensional structures, surpassing the limitations of Singular Value Decomposition (SVD). The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes. The emphasis is also on exploring how the depth and complexity of LSTM architectures contribute to improving predictive performance. Simpler architectures with a single dense layer effectively capture the periodic dynamics, demonstrating the network's ability to model non-linearities and chaotic dynamics. The addition of extra layers provides higher accuracy at minimal computational cost. These additional layers enable the network to expand its representational capacity, improving the prediction accuracy and reliability. The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics. Efficient mode truncation by HOSVD-based models enables the capture of complex temporal patterns, offering reliable predictions even in challenging, noise-influenced data sets. The findings underscore the adaptability and robustness of HOSVD-LSTM architectures, offering a scalable framework for modeling fluid dynamics.
- Abstract(参考訳): 流体の複雑な力学の正確なモデリングは、計算物理学と工学の基本的な課題である。
本研究では,高次特異値分解(HOSVD)とLong Short-Term Memory(LSTM)アーキテクチャを革新的に統合し,流体力学における低次モデリング(ROM)の複雑さに対処する。
HOSVD は多次元構造を保存し,Singular Value Decomposition (SVD) の限界を超える次元削減プロセスを改善する。
この手法は、2次元および3次元のシリンダー流(2次元および3次元)を含む数値的および実験的なデータセットで試験される。
また、LSTMアーキテクチャの深さと複雑さが予測性能の改善にどのように貢献するかについても検討している。
単一の高密度層を持つより単純なアーキテクチャは、周期力学を効果的に捉え、非線形性やカオス力学をモデル化するネットワークの能力を示す。
余分なレイヤーを追加することで、最小計算コストで高い精度が得られる。
これらの追加レイヤにより、ネットワークは表現能力を拡張し、予測精度と信頼性を向上させることができる。
その結果、HOSVDは、異なるエラーメトリクスを用いて証明されたように、すべてのテストシナリオでSVDよりも優れていることが示された。
HOSVDベースのモデルによる効率的なモードトランケーションにより、複雑な時間パターンのキャプチャが可能になり、難易度の高いノイズの影響のあるデータセットにおいても信頼性の高い予測が可能になる。
この結果はHOSVD-LSTMアーキテクチャの適応性と堅牢性を強調し、流体力学をモデル化するためのスケーラブルなフレームワークを提供する。
関連論文リスト
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models [2.8686437689115363]
本研究では,流体力学応用における物理原理に基づく純粋深層学習モデルとハイブリッドモデルの一般化能力と堅牢性について検討する。
3つの自己回帰モデルを比較した: 適切な分解(POD)と長期記憶(LSTM)層を組み合わせたハイブリッドモデル(POD-DL)、畳み込みLSTM層を組み合わせた畳み込みオートエンコーダ(VAE)とConvLSTM層を組み合わせた変分オートエンコーダ(VAE)。
VAEモデルとConvLSTMモデルが正確に層流を予測する一方で、ハイブリッドPOD-DLモデルは他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-04-27T12:43:02Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
Advection-Dominated Systems [14.553972457854517]
複雑な物理系のサロゲートモデルを学ぶための,データ駆動・時空連続フレームワークを提案する。
ネットワークの表現力と特別に設計された整合性誘導正規化を利用して,低次元かつ滑らかな潜在軌道を得る。
論文 参考訳(メタデータ) (2023-01-25T03:06:03Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
本研究はターボファンエンジンにおける燃料室噴射器の性能向上を目的としている。
燃料/空気混合物のリアルタイム予測と改善を可能にするモデルの開発が必要である。
論文 参考訳(メタデータ) (2022-12-24T12:59:41Z) - Digital Twin Data Modelling by Randomized Orthogonal Decomposition and Deep Learning [0.0]
デジタルツインは、元のプロセスの振る舞いを反映する主な特徴を持つ代理モデルである。
本稿では,流体の効率的なディジタル双対モデルを作成するための新しい枠組みを提案する。
我々は、最先端の人工知能Deep Learning(DL)を用いて、ディジタルツインモデルのリアルタイム適応キャリブレーションを行う。
論文 参考訳(メタデータ) (2022-06-17T09:45:04Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。