論文の概要: Compound and Parallel Modes of Tropical Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2504.06881v1
- Date: Wed, 09 Apr 2025 13:36:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:27.746999
- Title: Compound and Parallel Modes of Tropical Convolutional Neural Networks
- Title(参考訳): 熱帯畳み込みニューラルネットワークの複合モードと並列モード
- Authors: Mingbo Li, Liying Liu, Ye Luo,
- Abstract要約: 熱帯畳み込みニューラルネットワーク(TCNN)は乗算を減少させるが、通常のCNNと比較して性能は劣る。
化合物TCNN(cTCNN)と並列TCNN(pTCNN)の2つの新しい変種を提案する。
様々なデータセットの実験では、cTCNNとpTCNNは、他のCNNメソッドのパフォーマンスと一致しているか、あるいは上回っている。
- 参考スコア(独自算出の注目度): 2.851415653352522
- License:
- Abstract: Convolutional neural networks have become increasingly deep and complex, leading to higher computational costs. While tropical convolutional neural networks (TCNNs) reduce multiplications, they underperform compared to standard CNNs. To address this, we propose two new variants - compound TCNN (cTCNN) and parallel TCNN (pTCNN)-that use combinations of tropical min-plus and max-plus kernels to replace traditional convolution kernels. This reduces multiplications and balances efficiency with performance. Experiments on various datasets show that cTCNN and pTCNN match or exceed the performance of other CNN methods. Combining these with conventional CNNs in deeper architectures also improves performance. We are further exploring simplified TCNN architectures that reduce parameters and multiplications with minimal accuracy loss, aiming for efficient and effective models.
- Abstract(参考訳): 畳み込みニューラルネットワークはますます深く複雑になり、計算コストが高くなっている。
熱帯畳み込みニューラルネットワーク(TCNN)は乗算を減少させるが、標準的なCNNに比べて性能は劣る。
そこで本研究では,従来の畳み込みカーネルを置き換えるために,熱帯ミンプラスカーネルと最大オーバーカーネルを組み合わせた複合TCNN (cTCNN) と並列TCNN (pTCNN) の2つの新しい変種を提案する。
これは乗算を減らし、効率と性能のバランスをとる。
様々なデータセットの実験では、cTCNNとpTCNNが他のCNNメソッドのパフォーマンスと一致しているか、上回っている。
これらをより深いアーキテクチャで従来のCNNと組み合わせることで、パフォーマンスも向上する。
さらに、パラメータと乗算を最小限の精度で削減し、効率的かつ効率的なモデルを目指して、単純化されたTCNNアーキテクチャについても検討している。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Resource Constrained Model Compression via Minimax Optimization for
Spiking Neural Networks [11.19282454437627]
スパイキングニューラルネットワーク(SNN)は、イベント駆動型および高エネルギー効率ネットワークの特徴を持つ。
これらのネットワークをリソース制限されたエッジデバイスに直接展開することは困難である。
本稿では,このスパース学習問題に対するエンドツーエンドの Minimax 最適化手法を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:50:15Z) - Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on
Riemannian Gradient Descent With Illustrations of Speech Processing [74.31472195046099]
我々は、低ランクテンソルトレイン深層ニューラルネットワーク(TT-DNN)を用いて、エンドツーエンドのディープラーニングパイプライン、すなわちLR-TT-DNNを構築する。
LR-TT-DNNと畳み込みニューラルネットワーク(CNN)を組み合わせたハイブリッドモデルを構築し、性能を向上する。
我々の実証的な証拠は、モデルパラメータが少ないLR-TT-DNNとCNN+(LR-TT-DNN)モデルが、TT-DNNとCNN+(LR-TT-DNN)モデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-03-11T15:55:34Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - An Alternative Practice of Tropical Convolution to Traditional
Convolutional Neural Networks [0.5837881923712392]
トロピカル畳み込みニューラルネットワーク (TCNNs) と呼ばれる新しいタイプのCNNを提案する。
TCNNは、従来の畳み込み層における乗算と加算をそれぞれ加算とmin/max演算に置き換える熱帯畳み込みの上に構築されている。
我々は,MNIST と CIFAR10 の画像データセットにおいて,通常の畳み込み層よりも表現力が高いことを示す。
論文 参考訳(メタデータ) (2021-03-03T00:13:30Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Block-term Tensor Neural Networks [29.442026567710435]
ブロック終端テンソル層(BT層)は,CNNやRNNなどのニューラルネットワークモデルに容易に適用可能であることを示す。
CNNとRNNのBT層は、元のDNNの表現力を維持したり改善したりしながら、パラメータ数に対して非常に大きな圧縮比を達成することができる。
論文 参考訳(メタデータ) (2020-10-10T09:58:43Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
我々は,CNNにおいて,畳み込みカーネル間の構造正則化を導入する。
我々はCNNがパラメータや計算量を劇的に減らして性能を維持していることを示す。
論文 参考訳(メタデータ) (2020-09-04T20:41:47Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNN) は、完全な精度のニューラルネットワークよりもはるかに高速で、電力効率が高いため、多くの注目を集めている。
そこで本研究では、3次内積の計算複雑性を2。
性能ギャップを軽減するために,実装に依存した3次量子化アルゴリズムを精巧に設計する。
論文 参考訳(メタデータ) (2020-08-12T04:26:18Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。