論文の概要: TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling
- arxiv url: http://arxiv.org/abs/2504.07053v1
- Date: Wed, 09 Apr 2025 17:14:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:05:33.517202
- Title: TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling
- Title(参考訳): TASTE:音声のテキスト化と埋め込みによる音声言語モデリング
- Authors: Liang-Hsuan Tseng, Yi-Chang Chen, Kuan-Yi Lee, Da-Shan Shiu, Hung-yi Lee,
- Abstract要約: テキスト対応音声トークン化と埋め込み(TASTE)について紹介する。
TASTEは、音声トークンと対応するテキストの書き起こしをトークン化段階で整列させることにより、モダリティギャップに直接対処する手法である。
我々は広範囲な実験を行い、TASTEはトークン列の長さを劇的に減らしながら重要なパラ言語情報を保持することができることを示す。
- 参考スコア(独自算出の注目度): 46.60911294356232
- License:
- Abstract: Large Language Models (LLMs) excel in text-based natural language processing tasks but remain constrained by their reliance on textual inputs and outputs. To enable more natural human-LLM interaction, recent progress have focused on deriving a spoken language model (SLM) that can not only listen but also generate speech. To achieve this, a promising direction is to conduct speech-text joint modeling. However, recent SLM still lag behind text LLM due to the modality mismatch. One significant mismatch can be the sequence lengths between speech and text tokens. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through the special aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. Furthermore, by leveraging TASTE, we can adapt text-based LLMs into effective SLMs with parameter-efficient fine-tuning techniques such as Low-Rank Adaptation (LoRA). Experimental results on benchmark tasks, including SALMON and StoryCloze, demonstrate that TASTE-based SLMs perform similarly to previous full-finetuning methods. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and models are publicly available at https://github.com/mtkresearch/TASTE-SpokenLM.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキストベースの自然言語処理タスクに優れるが、テキスト入力や出力への依存によって制約される。
より自然な人間-LLMインタラクションを実現するために、近年の進歩は、聞き取りだけでなく、音声を生成することができる音声言語モデル(SLM)の導出に焦点を当てている。
これを実現するために、有望な方向は、音声-テキスト共同モデリングを行うことである。
しかし、最近のSLMはモダリティミスマッチのため、テキストLLMに遅れを取っている。
1つの重要なミスマッチは、音声とテキストトークン間のシーケンス長である。
そこで本研究では,音声トークンと対応するテキスト書き起こしをトークン化段階で整列させることにより,モダリティギャップに直接対処するテキスト適応型音声トークン化・埋め込み(TASTE)を提案する。
そこで本稿では,特別なアグリゲーション機構によってこれを実現し,訓練対象として音声再構成を行う手法を提案する。
我々は広範囲な実験を行い、TASTEはトークン列の長さを劇的に減らしながら重要なパラ言語情報を保持することができることを示す。
さらに、TASTEを活用することで、ローランド適応(LoRA)のようなパラメータ効率のよい微調整技術により、テキストベースのLCMを効果的にSLMに適応させることができる。
SALMON や StoryCloze などベンチマークタスクの実験結果から,TASTE ベースの SLM は,従来のフルファインタニング手法と同じような性能を示した。
我々の知る限り、TASTEは再構築目的を利用した最初のエンドツーエンドアプローチであり、音声言語モデリングに適したテキスト整列音声のトークン化と埋め込みを自動的に学習する。
私たちのデモ、コード、モデルはhttps://github.com/mtkresearch/TASTE-SpokenLM.comで公開されています。
関連論文リスト
- Recent Advances in Speech Language Models: A Survey [45.968078636811356]
音声言語モデル(SpeechLMs)は、テキストから変換することなく音声を生成するエンドツーエンドモデルである。
本稿では,近年のSpeechLM構築手法について概観する。
論文 参考訳(メタデータ) (2024-10-01T21:48:12Z) - DeSTA2: Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
最近のエンドツーエンド言語モデル(SLM)は、大規模言語モデル(LLM)の機能に拡張されている。
音声とテキストのペアデータを生成するための,シンプルで効果的な自動処理手法を提案する。
本モデルでは,音声教育データを必要としない音声関連タスクの汎用性を示す。
論文 参考訳(メタデータ) (2024-09-30T07:01:21Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
我々はまず,音声処理分野における音声 LM の促進の可能性を探る。
音声処理タスクを音声単位生成タスクに再構成する。
提案手法は, 強い微調整法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2024-08-23T13:00:10Z) - CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
本稿では, ベクトル量子化をエンコーダに挿入することにより, 多言語音声認識モデルから導出される, 教師付きセマンティックトークンを用いた音声表現を提案する。
トークンをベースとした拡張性のあるゼロショットTSシンセサイザーであるCosyVoiceは,テキスト・ツー・ツー・ケン生成のためのLLMと,トークン・ツー・音声合成のための条件付きフローマッチングモデルから構成される。
論文 参考訳(メタデータ) (2024-07-07T15:16:19Z) - Improving Robustness of LLM-based Speech Synthesis by Learning Monotonic Alignment [19.48653924804823]
大規模言語モデル (LLM) に基づくテキスト音声合成システム (TTS) は, 大規模音声データセットの処理や, 新しい話者に対する自然な音声生成において, 顕著な能力を示した。
しかし、LLMベースのTSモデルは、生成した出力が繰り返し単語、欠落した単語、不一致した音声を含むことができるため、堅牢ではない。
エンコーダ・デコーダ・トランスフォーマーモデルを用いてこれらの課題を検証し、与えられたテキストに対する音声トークンの予測訓練において、そのようなモデルにおける特定のクロスアテンションヘッドが暗黙的にテキストと音声アライメントを学習することを確認する。
論文 参考訳(メタデータ) (2024-06-25T22:18:52Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - BLSP: Bootstrapping Language-Speech Pre-training via Behavior Alignment of Continuation Writing [35.31866559807704]
音声とテキスト間のモダリティアライメントは 未解決の問題です
本稿では,継続文の動作アライメントによるLanguage-Speech事前学習をブートストラップするBLSP手法を提案する。
この簡単な処理により、ゼロショットの言語間シナリオであっても、音声認識、音声翻訳、音声言語理解、音声会話が可能なLLMの能力を音声に拡張できることを実証する。
論文 参考訳(メタデータ) (2023-09-02T11:46:05Z) - Assessing Phrase Break of ESL Speech with Pre-trained Language Models
and Large Language Models [7.782346535009883]
本研究では,事前学習言語モデル (PLM) と大規模言語モデル (LLM) を用いて,ESL学習者の音声における句分割の評価手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T07:10:39Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。